UnForm Version 7.0

UnForm® User Guide

Version 7.0

UnForm is published under license by:
Synergetic Data Systems, Inc.
2195 Talon Drive
Latrobe, CA 95682
USA

Phone: (530)-672-9970
Fax: (530)-672-9975
Email: sdsi@synergetic-data.com
Web page: http://synergetic-data.com

UnForm is Copyright ©1994-2006 by Allen D. Miglore. All rights reserved.
UnForm is a registered trademark of Synergetic Data Systems, Inc.
Other product names used herein may be trademarks or registered trademarks of their respective owners.

UnForm® Page Enhancement Software
License Agreement

NOTICE: OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THE FOLLOWING TERMS AND CONDITIONS. PLEASE READ THEM. IF
YOU DO NOT AGREE WITH THEM, RETURN THE PACKAGE UNOPENED, AND RETURN OR DESTROY ANY COPIES OF THE PROGRAM IN YOUR
POSSESSION. THE DEALER FROM WHOM YOU PURCHASED THE SOFTWARE WILL REFUND YOUR PURCHASE PRICE.

"Program", as used herein, refers to both this documentation and the software programs described by this documentation.
"Developer", as used herein, refers to Allen D. Miglore. "Publisher" as used herein refers to Synergetic Data Systems, Inc.

LICENSE
You may use the Program on a single machine, and you may copy the Program into any machine-readable format for backup purposes only. If you transfer the Program to another
machine, you agree to destroy the Program, together with all copies, in whole or in part, on the original machine.

You may not copy, modify, or transfer the Program, in whole or in part, except as expressly provided herein. You may not sublicense, assign, or otherwise transfer the Program to
any third party except by the express written consent of the Developer or Publisher.

TERM

The license is effective until terminated. You may terminate at any time by destroying the Program together with all copies of the Program in your possession. It will also termi-
nate automatically upon failure to comply with any of the terms of this agreement. You agree upon such termination to destroy the Program together with all copies in your
possession in any form.

CONFIDENTIALITY OF THE PROGRAM

You understand that the Program is proprietary to the Developer, and agree to maintain the confidentiality of the Program. You agree that neither you, nor any person or entity
acting on your behalf, will copy or otherwise transfer the Program, in whole or in part, in any form (including printed source code), to any third party. You agree to retain the
Developer's copyright notices, in all forms, throughout the Program. You agree not to de-encrypt or de-compile the Program.

LIMITATION OF LIABILITY
The Program is provided "AS IS" without warranty of any kind, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the Program is with you.

In no event will the Developer or Publisher be liable to you for any damages, including any lost profits or other incidental or consequential damages arising out of the use or
inability to use the Program, even if advised of the possibility of such damages.

SUPPORT
Support for the Program should be obtained from the Dealer from whom it was purchased. Support pricing and terms are established by the Dealer, not the Developer or
Publisher.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS.
YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND THE DEVELOPER
AND PUBLISHER AND IT SUPERSEDES ANY PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN YOU AND
THE DEVELOPER RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

UnForm Version 7.0 2

TABLE OF CONTENTS

TABLE OF CONTENTS ...ttt h ekttt e e E £ b e b e e b e Rt AR AR e E e e e b e e eb bt e bt et e e e e e e n e r e 3
INTRODUGCTION ..ottt 1k bbb bRt E e eE £ e s e s e e e e e Rt e bt e b e e et st e e Rt e bt bt et e e e e e e an e 10
VERSION 7 FEATURES e e e e R bbb et n bRt b e bt bt e neear s 11
DOCUMENT ARCHIVING AND MANAGEMENT ..ot 11
WINDOWS SUPPORT SERVER........cctiiiiiiiei et e bbbt e e en e 11
POSTSCRIPT DRIVER ..ottt bbbt bbb bbb se bbbt e s e b e an e e sr e 11
PDF ENHANCEMENTS ... e bbb bbb e b 12
IMAGES COMMAINND ..ottt ettt et r e R et r e bt e et E s R e Rt e m et e Rt e et r e r et r e e r et n e r e nrenr e 12
CIRCLE COMMAND ...ttt bbb et e R R b E e Rt e e e e e R bt e b e e b e e e n e s e ab e bt e bt e b e e n e anenrs 12
LINE COMMAND ..ottt e bR bbb e b e R R e b e b e e e b s e e b b e b e b e e e e e nn e e 12
WINDOWS CONSOLE CLIENT ..ottt bbb bbb e 12
NEW ZEBRA DRIVER COMMANDSootiiiiiiciie sttt n et 13
PRINTER MODEL SUPPORT ..otttk ah bbbt an bbbtk s e e r bbbt e s e e anenneane s 13
NEW FUNGCTIONS ... bbbkt e bbb bbbt e b e ne e b e R b e st et e e e e an e e nne s 14
BLOCK IF IN CODE BLOCKS...... .ottt bbb e bbb sresre s 18
MISCELLANEQOUS ENHANCEMENTSoo oottt an e et nne e 18
CLIENT-SERVER ARCHITECTURE ..ottt e 20
SERVER INSTALLATION ...t bbb bbb se bbbk e e e e an b are s 21
CLIENT INSTALLATION ..ottt eh bbbt e se b b eh e bbbt esbe e an e b nre s 24
WEB SCRIPT INSTALLATION . ..ottt bbb r bbbt nr e sr s 26
CONFIGURING THE SERVER ...t bbb nneare s 27
CONFIGURING EXTERNAL PROGRAMS ... r b 30
TCOPIIP IMONITOR ..ottt bbbtk h e b bt h b e b h b4 E £ e b e e E b h R s bt e R bt bbbt n bbbt n e 33
INTEGRATING UNFORM WITH BBX ..ottt 35
INTEGRATING UNFORM WITH PROVIDEX ...ttt 37
INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONSccociiiiiinee e 39
LICENSING ... bbbt e b E e E b b e R b b e a b e h AR e bR e e b e s e b e R e bbbt e e s 41
UNFORM COMMAND LINE OPTIONS ..ot e 45
FLOW OF PROGCESSING......c.oiiiit ittt e h ettt b e e en bbb sn e ar e 57
CONCEPTS, PRIMER, AND TIPS ...ttt bbbt et en e sne s 60
DOCUMENT ARCHIVING AND MANAGEMENTooii e 65
OVERVWVIEW ...t h b E b e e h R R AR R e e s e e e R e AR e R e R e b e b e e e e et e bt bt e bt e s e e e e n e e en s 65
STRUCTURE DETAILLS ..ot bt h bbb e e b e er b e bt e e e n e e enenrs 66

UnForm Version 7.0 3

DOCUMENT-LEVEL IDENTIFICATIONoiiiiiiiitit ettt sne bbb an e ane s 67

IMAGE-LEVEL IDENTIFICATION L.otitiitetiti ittt sttt sttt sttt st s b et st sbe et sbe et sbe et st ese et s be st be st et et sbesentennens 71
ADDING UNFORM-GENERATED DOCUMENTS......coiitititiitiiteiese sttt st sttt et sttt seesesneseeneane e 71
USING THE WEB BROWSER INTERFAGCEcoitiiitiiiiieie ettt sttt ettt 73
DIRECT BROWSER ACCESS TO DOCUMENTS ..ottt sttt st be s ase s snessensanesnenes 73
CUSTOMIZING THE WEB INTERFACEoooiiiiiiiestiese ettt bbbttt sttt nnens 74
USING THE UNFORM CLIENT ..ttt sttt sttt s bttt sttt se bt na s s bt n b et aneneenes 75
Triggering Archiving 0f UNFOIM JODSocviiiie ettt sna sttt besneera e e enee e nrenne e 76
AAAING EXIEINEAI DOCUMENTScuiitieiiiitiiteiietiet ettt etttk ek etk bbbt s bbb b et st b et bbb n e 76
DOCUMENT REIFIEVAL. ...ttt ettt e e b e b bt bt bt bt e Rt e s b e bt e e et e nbesbesb e e bt ebeeneeneenbenbenbesnea 77
DOCUMENTE DEIBLIONviiviicieite ettt ettt s ettt be b e b e e b e st e b e e b e e b e s b e st e be s b e st e be s b et et s b e st ebesbe st abenbens 78

[1o To1 0 1= T A T] T SRS 78
IMPOrting DOCUMENTS FrOM SASTONcuiitiiieiitiie ettt bbbt b bbbt b et b e 79
UNFORM SCANNING WORKSTATION ..ottt ettt es st saes s be st s be st esasbe s essabessesaasensensasessenes 80
FUNCTIONS RELATED TO ARCHIVING ..ottt et ettt be bt e st aneneenen 80
BUILDING DEMO ARCHIVE DATA oottt b et b et b e bbb st bt h e b et b et b et be st enes 82
WINDOWS SUPPORT SERVER ..ottt ettt bbb ettt b e sttt e s e be b et bens 83
RULE FILES ... ittt sttt sttt sttt s b et s 4t £e s b et e £ s 4 et e be s 4o st e bt e Rt e ke s b e Rt e R e e b e e e Ee e b e st e Ee e b e s e e Ee et e seeEe e b e st e benbene et st ens 86
CONTENT-BASED RULE SETSottt ettt sttt s be e se st e e sesbe s e s e be b e s e be b e st e be b e st abe b eneetenrens 87
AACROSS ...ttt ettt sttt et b et R e R e Lot E e R et e Ee R et eReeR oAt e R e eE oAt e Re R e R e e Renhe e e R e eRe e eEeebe e e R e ebe e et e ebeneeteeae e ereareeas 88
ANNOTATE, CANNOTATEcotititetite ettt sttt sttt be st eabe st et e sbe st e teebe st et e abe s e et e abeseebeabenb et e abeseebeabeseebeabeneeteabeeas 89
ARCHIVE. ...ttt bbbt bbbt e e bt bt s e e b e e bt e e e bt e bt A E e R e e Rt nE e R e b £ ekt R e e Rt ebe b b e b et b e e bt benhe e be b e 91
LI I X O R RTSSTRSRPRRSRPPPN 94
AUTHOR ...ttt b e et s b e te e 4e e e tesbe e et e ebe e e R e e be e e b e ebe e eEe e b e e e Eeebe e eEeeb et et e ebesbeEeebeneebeebeneetesbeneeteabeeas 96
BARCODE (PCL,PDF) 1.ttt sttt ettt ettt st b bbb e e bt s btk e s e b e et e b et st e bt na st e b et n et e et bentenen 97
BARCODE (ZEBRA).....eei ettt sttt sttt st be sttt b et b e b e e bt e b e e b4 e b e e bt e b et ek e e bt eb e eb et e be b et e b e ebe b e 100
BN ottt et et b e et h e bR eehe t R e b et e R e e be b eR e eRe e e R e eb e s e R e ebe s et e eRe e eEeeRe b eReebe e eteebe st eteebenteteebe st eteareeas 103
BOUJ, BOP, EOJ, EOP ..ottt sttt sttt st et a4t be b et e b e e b et e b e e be e e be e b et e b e ebe e et e abe e eteebesaetesbe e atenreneas 104
BOLD, ITALIC, LIGHT, UNDERLINE........cce ittt sttt sttt sttt sttt et sbe e etesbeneetesaeseetesneneas 105
CBOLD, CITALIC, CLIGHT, CUNDERLINE ..ottt ettt 105
1210) G 01 =10) SRRSO 106
1210) S 01 210) G SO RSOSSN 109
L0 2 L I PSSP TSP 112
(01] I OSSOSO 114
COMPRESS, NOCOMPRESScviiitiietiiteiete sttt st et te st ate st s e te st e seebesseseeae s es s ebe s es s eb et es s ebe s esaebessessesenaessasesaessanenrenes 115
CONST, GLOBAL, LOCALocitittieiiteie sttt sttt ettt et b s a8 ek e b8 b s e s ek e e st b e s e s e et et e s e b et s e s e ntenen 116
COPIES, PCOPIES......o ittt sttt sttt ettt st s bt s e b e a8tk e a8t b e s e Rtk e btk e bR e e b e b s e b e b e st e b et e st et et n e b e ntenen 117
(O OO P R PROSRR 118
(010 1] 1A | = PSSRSO 119
D I O SR ROPS U USRPTRSPRTN 120
10 LT OO SO PRSPPI 122
5 OO OO OO P R UPSOPRPOPRN 123
DSIN _SAIMPLE ..ottt ettt sttt et e te e b e st s e b et e R e b e bR e e R e bR e Re A e R e b et e R e ebe e et e ebe st ereebe st etente st eteare e 124
DUMP .ottt ettt sttt st et e ebe st e b a4 e st e R e e b et e R e ebe et e R e eRe e e R e AR e R e R e e Re R e Rt eRe e e R e eRe e eEeebe e eEeebe e eteebeneeteebe e eteereeas 125
DUPLEX. ...ttt ittt sttt ettt etttk et e b e e b e ek et e b2 e be e e b e ebene e b e e b e e e e b4 e R e e e R e e b e e e b e eb et eE e abe e et e ebe e beebe e erenre e 126
YN | O OO OO PR PRSPPI 127
ERASE, CERASE ...ttt ettt sttt ettt b et ete s b a1 e et e s b e s e et e s b a8 e ek e et e s e e be s e eRe et et et e et e e et e abe e eteebe st etesae st eteabe e 129
FIXEDFONT .ottt sttt sttt sttt e b e st et etesbe e eteeae e eteebe e e b e ebe e e b e eb e e e b e eb e e e b e e b e e e Eeebe e e b e ebe e et e ebe e eteebesaebeabessetenaeeas 130
FONT, CFONT .ottt ettt sttt sttt et e b e st et e e be st e Eeebe st eb e ebe e e b e eb e st e b e e b e s e e b e ebe s e e b e e b e ne e b e ebe e ebeabe st ebeabe st ebenbe e ebenbe e 131
LC 1 TSSOSO P R T S POSRO 134
HLINE ..ottt ettt et et et e te e b e e et e e b e e eteebe e et e ebe s e R e eb e e et e ebe e et e ebe e ete et et ebeebe e et e ebe st eteebe st etesbe st eteare e 135
L ST 1 O ROPSOUSPPTRSPRTN 136
IF COPY .. END IF ook et £ bbb e b et n bt e sttt et b 137

UnForm Version 7.0 4

IF EXPRESSION ... END IF ..o bbbt b bbb sre s 139
IMAGE .. e e 140
IMAGES ... R R R R Rt r e r e 144
T ALIC et E R bR R R R R R R e R R R R R e e R R Rt R et nn e n e renne s 146
JAV AS CRIPT .t e b bR R b e b h e bR R R R e e E b e et 147
KEYWORDS ... bbb n e bR bR E bbb 148
LANDSCAPE, RLANDSCAPE ...ttt ettt ettt r et r et r e r et r e r et n et r e nr et nr e nn e 149
I 1] I T TP TR PP PR PP 150
LI E LR R R R R e bR R et e e 151
0 TP TSP PP PRTP PP 153
IMACRO ...ttt et e e R R R R R R R R R Rt R R R Rt R et R et 154
IMALCROS.. ... et h et h b b h et e bR AR AR £ 4R e s e et R R SRR R R e e R R R Rt b e s 155
IMLARGIN .t h e e E b e b e bbb e E e R e AR R e R e bt h e e bR R R et 156
MERGE ... e 157
IMITCR e ettt r et et R R R R R R R R R R R R Rt R et R et r e 158
MOVE, CIMOVE ...ttt ettt bRt bR e Rt e s e bt AR R e R e bt e b et e r bt e R e bt b et e e e n e an et 159
N[O I = OO TP TP PP U RPR PP PR 161
OUTLINE L. bbb e e e a e b e R b e e bbb e b e e e bbb e b e bbb e et e b e 162
L0 LU I O TP PR T 163
PAGE ... R R R R R R R R AR e R R e e R e R Rt Rttt ne e n e re e 164
PAPER ... ot E R R E b e et r e 165
PORTRAIT, RPORTRAIT ...t e e b bbb b 166
PRECOPY, PREDEVICE, PREJOB, PREPAGE ...t 167
POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE.... ... 167
PROTECT .ottt bbbt b e b E o E R e bbb e e e R AR e bbb e R b bt 169
ROWIS . e E e Lo E b e b e b e bR R R R 170
SHADE, CSHADE ... oottt R et R e e R e s Rt e st e Rt ne et R e et R e e n e nn s 171
T 1 TP TP TP P PT PP PR 173
SUBUIECT ..ttt E R R R R R R R R R R R bR 174
SYMSET e bR 175
1= S LT 176
LI TSP T TSP PO PRUPRPTTRPRON 182
LI Y S T TP TPV P UR PR UPTPRTTRTR 183
UNDERLINE ...t bbb e bR bbb e b e b e b e b e se b e 184
UNITT S etttk r e e E R ek e e R e e R e e R e e Rt e R e e e R e e R e e e R e e Rt e e Rt e R e ne e b e e Rt e ek e a R et e e r e e b e r e renre e 185
W LINE et h e E bR R R R R R R R R e R R R R R et e e e r e renre s 186
V25T 1 TP TP PSPPSR PTUT TP 187
ZCOPIES ... LR bbb 188
ZDARKNESS ...t R R Rt Rttt 189
ZSPEED ... E R R R R R R e R e R e bR R R Rt et n e reare s 190
WORKING WITH MAGCROS ... e bbbt bbb e e b b sre s 191
REGULAR EXPRESSIONS ... bbb bbb bbb 193
SAMPLE RULE FILES ... e bbb e 194
SIMPLEL - INVOICE RULE SET (SIMPLE.RUL) ..ottt 195
SIMPLE2 — INVOICE RULE SET (SIMPLE.RUL).......cueitiiititiririeiee sttt 197
SIMPLE3 — INVOICE RULE SET (SIMPLE.RUL).......ceiiitiitiiirieiiisiieeres e 200
SIMPLE4 — INVOICE RULE SET (SIMPLE.RULY)......coutiiiitiiitiiiitetes st 203
INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL).......cootiiinieitnieiseese e 207
STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB (ADVANCED.RUL)cc.ccccovnenee 214
AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)ccooiiiiniiincerseessee e 220
LABELS — TEXT LABELS TO LASER LABELS (ADVANCED.RUL)ccceoiiiiiiitneiee e 226

UnForm Version 7.0 5

132X4 — MULTI-UP, SCALED REPORTING (ADVANCED.RUL).....cccctiiiiiiiiie ettt 228

ZEBRA LABEL - ZEBRA® LABEL PRINTER EXAMPLE (ADVANCED.RUL)c.cccciiiiiiiricrsesreeeee e 229
PDF OUTLINE SAMPLE (ADVANCED.RUL)octiiitcieiee ettt st sta et steanaenae s eneeseennenne e 231
PROGRAMMING CODE BLOCKS. ... ittt et ntee st st e s be e e beeasbe e s steessbe e asbeess bt e asbeesabeeanbeenabeeanteennbes 233
2y AN (O 2 A I 1A PSRRI 234
INTERNAL VARIABLES ..ottt sttt ettt ettt e b e et e e b e e et e e e b e e e be e et e e e abe e e bbeebe e e teeebenetes 239
Lo SIS R SSTTSTSTR 239
0TS S 239
CONSE ettt beh et b e r e b b AL beAe b b oA et et A e b b oA e et e b eAe bt eRe s e b ete b ebese b et ebe b ebese et ebere et ebennataris 239
(010] o[- ST PSPPI 239
Q100 01T SRS 239
070 S 239
CFOSSNAIIS.... ..ottt ettt ettt bbbt et se b b e s et ebese b e b ese b b e s e b e b e R e s bR e b e b e s et et eRe b et ese et ebere et ebereareris 239
GOWNS .ottt b et bbb bt b et oA bR e et e R e L R et et eR e e b eRe e AR et b eRe e e b eRe b e Re R et et eRe et et e Re et ebere st eberearers 239
0L =T RS SRSTTTSTR 239
o[0T o] 1= OO OO OO OSSOSOV 239
SRS 239
TNAEGINS ..ottt bbbt b sttt et bbbt e b e R e R e £ £ o€ £ £ £ £ b e b e b b SR SR e R e £ £ e £ £ £ R Rk e R SR SRS £ £ £ £ £ £ b bbb b eE e R e Rt e s bbbt 239

Lo LT £ L0 SRRSO 239
OULTINES. .. e b e ek b etk b et b e b e Rt e b s b e Rt e b e e b e Rt e b e b et e b e b oAt e b e bbb Rt e bbb Rt b rene 239
0TSSR 240
[SL=T0 [=] 0TV 4 TP OO TP U PR T PO TRTROP 240

O 10T SRRSO 240
L0 OO OO SO 240

K] (] oIS T ST P TP P RSO PPTURPOPROPPPRPN 240
LR K11 OO USROS 240

L PSSP 240
UE KX ettt et bbbttt b e e bt b e R SRR R SRR e R e R oA e R e ARt E e h oA e E e Rt e R bRt Ee bRt be Rt b rene 240
INTERNAL FUNGCTIONS ...ttt ettt st e et e e s ke e e aat e e s ta e e aas e e s RaeeasaeesReeeasbe e teeenbeeeateeeneeesteeanneeeees 243
arrtoStr(ArTSLall],StrP,aIMB) ..ottt bbbttt bbbt 243
DOXIead(file$,KEYS,rECE,EITCOUR) ...evvvetiriiieieiie ettt ettt b et et re st a e e et s e e et e s e e abere s benennnnas 243
CHIENTENV(NAMES) ...ttt ettt bbb e bt b e e e bt b e e b e e b e e b e e b e st e b e b et e bt e b e st et s b e ne et nben e et bns 243
CIMEOCOIS(CENMTIMETETS) ... vtttk b ettt b etk b ekt e btk e b e bt e bt b e b e st e bt e b e Rt e bt e b e st e bt e b e st et bt et nr e 243
CMEOTOWS(CENTIMELEIS) ..e.teutetete ettt ettt ettt sttt b et e e s et e b e s bt bt e b e e aees b e e e b e ebeeb £ e b e e Rt e b £ e e embeneeebenbeebeebeaneentennenbesbenaea 243
(o0 A (DL (=TT (0] USSR 243
COUNE(SEIS,AIMB) .ot ettt b ettt b e bbb e e bt e b s e e bt ek ee e b e b e st e b e b et e b e b e st et e s b et et s b ne et bns 244
COUNEGSEIS,AIMEB) ..ttt etttk bbb bRttt e e s bbbt st et st seee 244
CUL(COL,TOW, COIS,VAIUBE) ...ttt bbbttt bbbt bbbt b bbbt et eb e bt e e nn et 244
dbconnect(NAMES, tIMEOULEITIMSYE) ... vereiviieiieii sttt b b s et re st a e et et e s e et e se e etere e asenennnnas 244
dbexecute(name$, command$, timeout, fdelim$, rdelim$, response$, errmsgs) ..o 244
oLcT [o o [=T () IO OO OO OO OSSOSO R TSP PP POUP P POPRPON 244
docidexists(linS,d0CtYPES,A0CIAB)eviieierieieieieteie ettt 244
email(to$, from$, subject$, body$, attach$, cc$, bee$, otherheaders$, loging, password$,logfile$).........cccovvvviiiinnns 244
BNV(NAMES) ...ttt ettt et b ettt b et e bt b oo bt b e e e bt e b £ e b e eb e £ e bt e b e e e bt e b e e e b e e b e e e Rt e b e e Rt eb et e bt eRe e e beabe et e abe e 245
LT 1o T T T PP TP PR R TPPRPRROP 245
LT (X L (=1 (o]0 OO TP PRSPPI 245
ey ST 1L PSSP 245

o T=L (0] I8 01T oo £ USSR 245
GEL(COLLTOW,COIS,EIIME) ...ttt ettt bbbt bbb bt s et e bt e b et s e e et et e st et ese st ebebesbebesesnaris 245
GEL(COI,FOW,COIS,EIHMB,PAGE) ..vveverieieririieriet ettt bbbttt bbb bbb R ettt £ e bbbt b et b e et e bbb e 245

o T=L(olo] I o) oo (-3 1 1) SRS 246

o T=L (o] I o) A o] IS8 T o= Vo) SRS 246
getarc(lib$,doctype$,docid$,subid$, filename$ [Lerrmsgdl).......cccovviiriiiiiiccce s 246
GELFIIE(FIENAMEE) -....vceeeiiti ettt bbbt £ £ £ bbb bRt £t £ £ e bbb bbbt e e bbb 246

UnForm Version 7.0 6

getdocidprop(lib$, doctype$,doCidS, PrOPS)......ccoviviiriiieiiiicieee ettt rs 246

getfilefield(filenameB,KeyS ,FIEIH) ...ttt 246
getfilefield(filename$,key$ field, dIME, QUOLEA)vcvevieiiiciic et enas 246
QEtfIlEraC(filENAMES,KEYE) ... cveeeieeeee ettt ettt Rttt ettt e e e 246
getfilerec(filename$,key$, dIMS, QUOTEA)vovivivieeeeeie ettt 246
getinival(filename$,seCtioNB[,NAMESB])covivruiuririeieieeie ettt bbbt 247
oL 1oL T (A= T4] - L) RS PSSTPSTSTRR 247
GetpPAVAI(NAMES,OPLIONSE)ocveieieecte bbbttt s h ettt b et b et b et b et bt r e 247
getsubids(lib$,doctypeS,doCidSL,AIMB]) ..o.vvrvriiieeeree et 247
INCRTOCOIS(INCNES) ...ttt b bbbttt e b et s et bt e bt b £ e b e e Rt eR b e eE et e nb e eb e et e e bt eb e e e enbeneesbesbe e 247
INCREOTOWS(INCRES) .ttt te e st e s et e be s ee st e s beeRe et e e R e es b e e et e eeabeateeaeesee e enbeseenrenee e 247
INSPAGE(N,AITSLAIIT) ettt s bbbtk b et b et bbb 247
0] 162 EST=T (o T TSRS 248
jobexec(id$,0utputS,AriverS,argStIiNGE)cocov ittt ettt b bbbttt ettt ettt b b renas 248
0] 11 (T o TR PSPPSR 248
J L]0 o] =T (o 3 OO OSSOSO PR O 248
Ibound(@rrS[all] [,AIMENSIONT)cueiiiteirieieieieee ettt ettt ettt e bt ettt e se et ne s 248
L= I (=TT i) TSSOV TTTRTTOTRRRRN 248
TIDEXISES(IIDE) ..vvv vttt ettt bbb b e s bbb bbb R R e R e e e e bbb bbb bAoA e e e e e st sttt R reres 248
0T (4]) IO OSSOSO 249
LoToT(atSTo R [oTu 1 [-E. IO 249
L[0T g (o] =] (o] o) OO TP UO R TUTTPR 249
LT E 0T SRRSO 249
mcut(col,row,cols,rows,Value$, IS, trimSB) ..o s 249
Mget(Col,row,ColS, FOWS, B, IIIME)ciiiiciic ettt ettt sttt e et b e et rens 249
o G Tgo I g VAR o I) TP 249
MSEL(COL,FOW,COIS,FOWS,VAIUEE)cvvcviieicie ettt s bbb b et bbb bbbt bns 249
msfax(filename$, faxnums, tagsP, EITMSTB)cviiriiiie e ettt st 249
PArSE(SEIB,N,BIIMITEIS)ottt bbbt s ettt ettt b e r et et b et 249
PArSEQ(SIIB,N,AEIIMITEIE)ttt bbbttt b ettt E e b bbb bbb e e e e bbb 250
pdftoimage(fromfile$,tofile$,format$[,resolution[,errmsgd])ccevrrrririeirnere e 250
oL 0T T U4 TSRS 250
PPOPEE(EXPIESSTON) ...evttettetesteseete sttt sttt st s e e bt e bt b st eb e s be st et b e ekt e b e e ekt e b et e b e e b oAt e bt e b e At e b e e b e st e b e b et ekt e b e st ek e s b e st e be s b st et e r e 250
putdocidprop(lib$, doctype$, dOCIAB, PrOPE)c.oveeeereriiiiiririreee ettt 250
[oTULoT= Vo L= (T U LI RS SSTPTSTRN 250
LT a1 A T=TaT 11) OSSPSR 250
a1) TSSO 251
SEE(CON,TOW,COIS,VAIUBE) ... vttt bbbk etk b bt ekt b ket bbbt e b b et e et et e bt e e nn et 251
R ATO T (=T R L=T 3 oo PSP 251
SEFIPIINES(EEXEE) vttt sttt bbbkt b etk s b ekt e bt ekt s b e st e b e ekt e bt e bt ab et e beahe e ebeabe et e ebe e 251
Strtoarr(StrS,arrSLAll],AIMB) ...ttt bbbt 251
SUD(STIB,01UB,NMEWSB) ...ttt bbb bbb £ £ £ e bbb bbb bRt £ e e bbb bbb n et e 251
sUbidexists(lin$,doctypPeS,dOCIUB)ciiriiiiiiiss bbbt 251
LE2] LT (=LA) OO PRRROPRTSPRN 251
textwidth(text$, fontnum|fontnames, SIZE, ALLI)ccviiiiiiiiieice et re e 251
LU TR oL =R (o]0 OO USSP PP 251
UbOUNA(ArrS[all] [AIMENSIONT) . .eveieiteiieiie ettt b ettt sttt b et b et et s b et e s b et et sttt nbens 252
0] o 0T (D0 oL (=T3] [o] 1) SRS 252
RUNTIME VERBS AND FUNCTIONS ...ttt ettt et s e s e tae e st e staeestaeestaeanaeestaaeneessteeenneesnseeanneeans 253
ASSCSEANG) ..o eeeeeeeeeeeeeeee e e e e e eeee e s e ee e eee e ee e ee e eeeseeee s e e ee e s ee e ee e eee st s e eee e eee e 253
FN I [1) SO SPS 253
2] LT =10 T=T g =T a0 S 253
2] A USSR 253
(08 | (11T =1) OSSR USSR 253
(010 1NV I 1N O O PR PUROPPOPRPIN 253

UnForm Version 7.0 7

CVS(SEIINGLAET) vt tereeterteieete ettt sttt sttt sttt ettt b et ekt s b e e ekt e b e ekt e b et ekt e b et e ke e b e A £ e b e e h e R e e bt e b e Rt e b e b et e bt e b e st e bt eb e st et nb st n b r e 253

DATEGUITAN {EMEF {IMASK]) ..ttt bbbt bbbttt e e e bbb b e 253
DTEGUHAN {JHMEF {IMASKE) ©eviveriitiieiiitiiest ettt sttt bttt bbb e 253
[0 = O (£ 2o) S 253
DIM String(1ENgth {CNAIT)cuiiiiiiiei bbbttt bbb bbbt 253
DIM name[dimL{,dim2{,dimM3I}] ...vevieriiiiiiiisies ettt sttt b et rens 254
[| OSSOSO 254
L I TV T o<) S 254
RN i 11T T Ty PSSP 254
EXITTO HNEIADEL ...ttt b e et b ekt b e bt e st e R b e b e b e b e eb e e b e e bt eb e e e e benbesbenee e 254
[ST L L1001 1] o) TSRS 254
1] (10T T o USSR 254
FDEC(SIIING) .t etetteteeeieet ettt ettt b etk bbbk bbb h £ E e bbb h bR R b s bbb bt 254
1T = (S T) RSOSSN 254
[T (ot 4= T g PSS 254
L I gL C=To T=T e (T) S 254
DIMINTEIEI{,STIINGY) ettt b bbb bbb bbbkt h bbbt bbbt bbb b et et r e 254
FIN(CNANNEI) <.ttt bbb bt e Rt e st e e e b e ke e bt e b e e Rt eR b e e e b e nb e ebeeb e e bt eb e e e enbeneesbe b e 254
FOR numvar=start TO end {STEP INCrEMENT}.......ccociiiiiiii ettt st sttt eena e e e b e sresresre e 254
L e I (T o<) S 255
GOSUB HINEIADEL ...ttt et et et e s te s b e s b e e be et e e e enteneesbesbeebeeteeneeneeseenbeneeaneas 255
(100 MO I [T9T=] F= o OSSPSR 255
[AN LCY S U T) PSS 255
IF test THEN statement(s) {ELSE statement(s)} {END _IF OF Fl1}...oooviiiiicee e 255
INT(NUMDET) ettt b et b b bbbt bbbt e bt e b e eb e e bt e e bt e bt et e bt e bt e ekt eb et et e e b et et e abe e ebenbe e 255
O | QT T Lo 11 o = IO OO P R U RS TUTRTPR 255
[N (T a o) ISR 255
LET Var=valUe{,Varm=ValUB.ottt ettt ettt e s et e b et e st e et e e neen e e e e e e seenrenre e 255
IVASK (SEFINGL FEOEXPIE) ettt bbbt bbb bbb bbb bbbt b bbbt b et et n e 255
Y T N Lo T g=To (=3 o] o ISP USSP 255
T R0 TR TP ST 255
AN 0 g 81T T S 255
IMIOD (NUMLINUMZ) <.ttt b bbb bbb h kbR b bR btk E £ E e bbb s e b e s e bt b skt b et et bt et b s 255
ALY T T) SOOI 255
ON integer GOTO|GOSUB linelabel{,linelabel...} ..o e 256
OPEN(integer{,err=linelabel|next}{,isz=integer}) StrNQcccoiieeierirere e nne 256
POS(stringl relation string2 {,increment {;0CCUITENCET}) ...voviviiiiiriiiiiriese e 256
PRINT(Channel) Value {ValUue... - b . oottt b bbbt e e bbb 256
READ{ RECORD}(channel {,options}) variable {,variable...} ... 256
REM ottt bt bbb R R R R R R R R R R £ R oA E e R R R R AR bRt R bRt bbb b e 256
] I OSSP 256
RETURN . .1ttt ettt sttt bbbttt st R et s bbb bRt bRt e s e bt e R e £ e R e b bR e e b bR Rt n e e b et e n e e b b e nEe b ens 256
N DT () 1o = o) S 256
@10 AN a 10Ty] 2= g oL £ od] (o]) S 257
SCALL(SIIING) vttt ettt etttk b et b e e h bt b b e e bt e b e e bt b £ e bt S b e £ e b ARt e bt bR E bRt R bRt b bbbt b e r e 257
R T L1) IO RU SO S TP 257
SETERR HNEIADEL. ...t ettt bbbttt s e b et e b s b et e b s b et et e b et et nb e n b nbns 257
311N (014101 SRS 257
STBL(SIIINGLY,SIIINGZL) ...ttt e b e et bbbkt b et bbbt b e bbbt e b nb et et bt et r e 257
(€] I g TaTo R S 1 T g To 124 TS RURUPURRUPTRN 257
SR R TU L o= 11T 14 SRS 257
STR(SIFING{IMASKY) o vteteeieiesis ettt ettt e et et st e s beeRe e s e seese e eesb e s beaRe et e eneenteseesbenbeaReereeneeneeseeseneennens 257
STRING fillename{,erT=IaDEIT........o bbbttt bt b e 257
SERIAL filename{,err=Iabel} et e b e bbbt e bbb nes 257
QIO =T (101 (=T 1=1 o PSSP 257

UnForm Version 7.0 8

UN T ettt ettt bbbt 4 et e s o4 e b e e et e R e s e b e s e s a4 e R e s a4 e R e s e b e R e e bR et bR e AR e R et bR et b e R ettt e bt e re et erer et ne s 257
WHILE CONAItION...WEND.......ctiiiiiieiiitiiieiste ettt sttt sttt b et e bt e e st st e e b e et et e s et e st e s et et n e neneenen 257
WRITE {RECORD} (Chan,0ptioNS)AaLa........ccveiueriirieiiieieeeiesie st e e eee sttt sne e e e e aesnestesnaere e e eneeseenreneeens 258
ERROR CODESottt ettt sttt sttt te s b e e et e s b et e te a4 et et e a4 e e et e eb e e et e e b e e e b e ebe e ebeebe s eteabe s et e abe e eteabesaetesbessateabeeas 259
EMAIL INTEGRATIONcootictet sttt sttt ettt s e a4 e £ e e a2 b e e s 4 et e e e b e be e eaeEese e bt e s e st b esesbebenenaebereneaneneneanas 261
A R 1 I = SRR SRPPRPRTSR 268
CREATING HTIML ..ottt ettt sttt b et sttt e s e e b et e e s e ke s e e b et et s et e se s bt ese b et ese st ebese s ebesesbebenennarin 269
HTML CONFIGURATION ...ttt sttt sttt sttt te s eae s et et £e et et e e et et e e e b e se e et et et eaes e s enereseabenennnrin 271
HTML OQUTPUT TEMPLATES ..ottt se st se et et e s s et et e e s erene et e s e neeaeseneebereneatenenennis 273
HTIML RULE SETS .ottt ettt st 1 et et s b et et e e 4 a4 e be e b et et e e b e e et e e b e s ebe s b e e et e et e e et e abe e eteabe e etesbessateabeeas 276
BORDER ...ttt sttt sttt b ettt e 4 et et 4 et et a4 e R et a4 b e e bR e e bR e e e bR e At e bR e A e b eRe ek R et b e R et et et e et e be s et eberenbebe e nreren 277
(0L D RSSO 278
(0L T | 1 OSSR 282
FRAIME ..ottt ettt e 1ot e ke et et e teeb et et e e b e e ete et e e et e ebe e e R e eb e e e b e ebe s e e R e eae e e R e eb et e R e eb et et e et et eteebe et eteebe st eteareeas 283
HDRON, HDROFF, HDRTD.......ciititeiiiteti ittt sttt sttt sttt sttt sttt bt s st b e s b be s s s et e sa s b et e ss s ebe s et et e ssebese s eberessabenennaris 284
0 Y 0 TSP 285
IMIULTIPAGE ...ttt ettt sttt s b s e e a8 R e E e Rt e bR e bRt e e e e e e b e n et e e b e e et ene e st e re e neene e 286
NULLROWV L.ttt ettt ettt st a1 e e 4e st e s e a4 e s s a1 e a4 e s s et e ebe b e s e a4 e st e s e et e se et e e R e s e eReeb et ebeebe e et e abeseeteabe e etesbeseateabeeas 287
OUTPUT .ttt b bttt e b b et 4t e s e b e b et 2 e b e s e a4 e ket e s e ke R e e b e b e e s e ke s e b et e se b et es e e bt e se b et ebe st ebe s s s ebebe st ebenennars 288

L@ I = OSSPSR 289
PAGESERPooieiieeieistee ettt ettt ettt s et Rt ARt E R et R Rt R R AR RS R R e e R R et R R et R e Rt e E e R et Re Rt e e R reneete e neern 290
PREJOB, PREPAGE, POSTJIOB, POSTPAGEccociiiictite sttt ettt sttt sttt st abe st ete st st tesbe st etesae s ateane e 291
ROWDEF ..ottt ettt s e b b et et e s e s b e s et a4 e s e 4 a4 oA e e s e b e s e s et e s e s e ket e s et ese s et e b e b et ese s et et e nbebese s eberessebesennaris 293
THTLE oottt ettt et s e bR et ARt R R et bRt AR et R R et R e R et R R e e R £ e AL R e R e R e Rt b Re et et R et Re et rene e 296
81 ST 297
LY 1 I SO SRO 298
SAMPLE HTIML RULE SET ...ttt sttt st a b1 bbbt bbb s s st e b e bt e s e bt se st b e e s bese st ebenennern 299
AGING REPORT SAMPLE........cciiiitititeiitstett sttt sttt st se sttt sbese st s e te e st e s e et ese s e s s e se e st e tesesaebe e stete s et ene e st ere e asenens 299
INDEX ..ottt sttt ettt ettt e bt te e b e b e te e b e s b et e e b et e R e b et e R e R e b e R e eRe A e R e eRenh e R e eRe e eReeRe e eEeebe b e R e ebe e eReebe st eteebe e eteebe st eteareneas 303

UnForm Version 7.0 9

INTRODUCTION

UnForm is a software product designed to work as a filter between an application and an output device
like a LaserJet printer or a program like a fax product. Most applications can be simply configured to
print through UnForm, which in turn processes the output from the application, determines if custom
processing is necessary, and then applies any enhancements before it is output.

For example, if a UNIX program sends output to the spooler like this:
cat file-name | Ip -dlaser -s 2>/dev/null

then the output can be changed to use UnForm (note the use of the —oraw option, which can vary by
operating system):

cat file-name | uf70c_-f acct.rul | Ip -dlaser —oraw —s 2>/dev/null
or for better performance, UnForm can print directly from the server:
cat file-name | uf70c —f acct.rul —o ">Ip —dlaser -oraw"

UnForm can also work in Windows environments, as long as the application can produce a file and then
execute UnForm to process the file and produce output.

UnForm is unique in its ability to analyze report output to determine what, if any, customization to
apply. When a report is detected that requires enhancements, UnForm can add line drawing, shading,
attributes, font control, and text to the form. UnForm can also handle the processing of multiple copies,
multiple output devices, attachments, overlays, and graphic images, and includes support for the
complete Business Basic programming environment to add true programmed intelligence to any form.

The enhanced output can be used to simulate pre-printed forms, or to change the look of plain-paper
forms, for which headings and dashed lines are printed by the application, from crude to professional.
UnForm can also be used to enhance reports, such as financial statements or aging reports, raising them
from mundane to board room quality.

UnForm can produce enhancements on any printer or device that offers the HP PCL5 printer language.
This includes all HP LaserJet and compatible printers beginning with the HP LaserJet I11, many UNIX
faxing software packages, and other products.

UnForm can also produce virtually identical output in Adobe’s Portable Document Format (PDF), and
similar output in Zebra's ZPL 1l language, supported on many Zebra thermal label printers. With proper
configuration, UnForm can automatically convert its PDF output to any format supported by
Ghostscript, including Postscript, tiff, jpeg, png, and more. Lastly, UnForm can parse column and row
oriented reports and produce formatted HTML output.

UnForm Version 7.0 10

VERSION 7 FEATURES

DOCUMENT ARCHIVING AND MANAGEMENT

UnForm 7 offers optional document and image storage and retrieval features. These are described more
completely in the Document Archiving and Management chapter. The highlights are:

e The new archive command can be added to UnForm rule sets to store both text and PDF
versions of UnForm processed documents in server-based file system libraries.

e A large set of new —arcxxx command line options can be used to store, retrieve, and list
documents and images stored in the libraries.

e A web browser-based document management interface provides a comprehensive and easy to
use interface to the stored documents and images.

e A Windows-based scanning tool provides an interface to automate the identification and
uploading of images and other files from scanners or Windows file systems.

e New code block functions are provided for document retrieval during UnForm jobs.

Archiving is licensed via the standard jobs activation key. The scanning tool is licensed by concurrent
connection.

WINDOWS SUPPORT SERVER

The Windows Support Server is a program designed to run as a companion to the UnForm 7 server.
Certain functionality that is useful to UnForm users is either not present or is expensive to acquire on
Unix or Linux operating systems. The UnForm Support Server is designed to run on a Windows
system on the same network as the UnForm Server and provide this functionality.

Functionality includes dynamic image scaling and conversion, access to current Windows versions of
Ghostscript, ODBC access, and Microsoft Fax support.

More details can be found in the Windows Support Server chapter.

POSTSCRIPT DRIVER

The PostScript driver generates native postscript code that supports printer features, such as duplex and
tray selection, and also supports downloadable Type 1 fonts. Like all drivers, the Postscript driver is
selected via the UnForm client command line, with the —p ps, or —p psd, option. The psd option
specifies that the printer has a disk with plenty of available space, and can be used for black and white
image caching.

The postscript driver supports tray, bin, and duplex options, like the pcl driver. In addition, it supports
eps and jpeg images natively.

UnForm Version 7.0 11

PDF ENHANCEMENTS

e Support for JPG images, which is automatic when a .jpg or .jpeg image file is supplied to the
image, attach, or images commands.

e User and Owner passwords, via the enhanced protect command.

e Document-level embedded Javascript, via the new Javascript command.

e Annotations, with support for text, rubber stamp, hyperlinks, and Javascript styles, via the new
annotate command.

e Flate compression on most platforms (those that support zlibs), which generally results in much
smaller output file sizes. This new mode is automatic unless turned off by the —nocompress
command line option or the nocompress command.

IMAGES COMMAND

This command appends a list of images to the current page while printing. The list may contain any
number file names. Each is converted to a native image in sequence and added to pages following the
current page, optionally scaled and tiled based on the across and down options.

Images need to be in a format that can be converted via configured image conversion and scaling
programs or the UnForm Windows Support Server. Common formats include jpg, tiff, bmp, and png.
Specifically, pcl images cannot be used as they are not scalable. In addition, if Ghostscript is available
on the server or the Windows Support Server, then pdf files can be included. This is particularly useful
when used with UnForm archive libraries, as pdf images can be extracted from the libraries and
appended to a job An images command may be placed inside an 'if copy' block or be run with an exec()
command in a code block, in order to append images only on selected copies or pages.

CIRCLE COMMAND

The circle command provides for drawing of a circle centered at any point and with any radius,
optionally filled. This command is supported by the laser, Postscript, and PDF drivers, though not the
laser driver if HP/GL is turned off by the —nohpgl command line option.

LINE COMMAND

The line command provides for drawing of a line between any two points. This command is supported
by the laser, Postscript, and PDF drivers, though not the laser driver if HP/GL is turned off by the —
nohpgl command line option.

WINDOWS CONSOLE CLIENT

uf70cc.exe is a Windows console client. The advantage of this client is that it does not require a full
local install on the machine that will execute it. It can be executed across a network without local
installation. The command line is identical to all other clients, though unlike the standard Windows

UnForm Version 7.0 12

client it does not honor the -status option to display a status window. Instead, any local output is sent to
standard output or standard error.

Like any console application, input and output can be redirected via files rather than the keyboard.
uf70cc.exe -server 192.168.1.99:2715 -f acme.rul -p pdf >abc.pdf <abc.txt

This client will be of particular use to companies running Basis Visual PRO/5 on networks, as there is
no need to install clients to support each workstation running the VPRO/5 application. Just point the
printer alias lines to a central copy of uf70cc.exe. Note it will default to using the server 'localhost’,
which is likely wrong on a network. You can override this with either a -server command line option, or
a server= line in a uf70cc.ini file in the same path as uf70cc.exe.

Note that an addition executable is provided that will run console applications silently, that is, without a
flashing console window, which can be annoying when a Windows application runs a console
application. This executable is called ufquiet.exe. It simply executes its command line in an invisible
console:

\path\to\ufquiet.exe \path\to\uf70cc.exe ... your options...

The uf70cc.exe and ufquiet.exe programs are found in the UnForm server install directory.

NEW ZEBRA DRIVER COMMANDS

Three new commands have been added for Zebra label printers that support the ZPL print language.
These commands are:

e zcopies, which allows setting of printer-based copies for higher performance when duplicate
labels are required.

e zdarkess, which allows setting of the ZPL darkness parameter.

e zspeed, which allows setting of the ZPL speed parameter.

PRINTER MODEL SUPPORT

As part of the development of the PostScript driver, support has been added to parse printer PPD files
(Adobe’s PostScript Printer Definition format files) for PostScript coding of tray, bin, and duplex
support. This capability was extended to also support PCL coding to enable consistent naming of tray,
bin, and duplex command values.

The new —-m model command line option provides a way to specify a PPD file to use, with default
pcl.ppd and ps.ppd files supplied and automatically used if no —m is specified. The user can add custom
ppd files as needed, possibly copying and enhancing those provided, to add new bin, tray, and duplex
codes or to provide code for custom uses.

UnForm Version 7.0 13

In addition to automatic support for tray, bin, and duplex, the boj, bop, eop, and eoj commands have
been enhanced to support expressions, and a new getppdval() function has been added to enable the
developer to easily add features such as stapler support via custom ppd files.

For example, the command *boj {getppdval(“OutputBin”,”Stapler”)}’ would load the ppd code
associated with a *OutputBin Stapler line in the job’s ppd file, and prepend it to the job.

NEW FUNCTIONS

A large number of new functions have been added, and new formats for some existing functions are
available, for use in code blocks or expressions. These functions include:

arrtostr(arr$[all],str$,dIm$)

Converts array arr$[all] to delimited string str$, using
dIm$ as delimiter.

clientenv(name$)

Returns client-side environment variable value.

cmtocols(centimeters)
cmtorows(centimeters)

Returns columns or rows, given a centimeter measure.

count(str$,dim$)

Counts elements of a string, parsed by a delimiter.

countq(str$,dim$)

Counts elements of a string, parsed by a delimiter,
honoring quoted strings.

dbconnect(name$,timeout,errmsg$)

Connects to the database source identified by name$.
The support server configuration is used to define the
names and associate them with data source connection
strings. Typically done in a prejob code block.
Requires the Windows Support Server.

dbexecute(name$, command$, timeout,
fdelim$, rdelim$, response$, errmsg$)

Executes the sql command cmd$ and returns zero or
more result rows in response$. Columns are delimited
by fdelim$ (tab - chr(9) - by default). Rows are
delimited by rdelim$ (CR-LF - chr(13)+chr(10) - by
default). Requires the Windows Support Server, and a
previously successful dbconnect() function execution in
the current job.

delpage(n)

Command removes page n, pages n+1 to end are shifted
down.

docidexists(lib$,doctype$,docid$)

Returns 1 if the document type and ID exists in the
library, or O if not.

exists(filename$)

Returns 1 (true) if the file path specified exists, O (false)
otherwise.

get(col,row,cols,trim3)

Same as get(), but with a trim “Y” or “N” option.

get(col,row,cols,trim$,page)

Same as get(), but with a trim “Y”” or “N” option, and a
page number option to retrieve information from any
page of the job.

get(col,row,cols,trim)

Same as get(), but with a Boolean trim (0 or non-0)
option.

get(col,row,cols,trim,page)

Same as get(), but with a Boolean trim (0 or non-0)

UnForm Version 7.0

14

option and a page number option.

getarc(lib$,doctype$,docid$,subid$,filename
$[,errmsg$])

Retrieve an archive image to a user-specified or
temporary file.

getdocidprop(lib$,doctype$,docid$,prop$)

Sets prop$ to a composite string containing properties
about the document specified. These properties include:

Prop.date$ - date in yyyymmdd format

Prop.time$ - time in hhmmss format (24-hour clock)
Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line breaks
Prop.keywords$ - semi-colon delimited keywords
Prop.categories$ - semi-colon delimited categories with
pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

If the document type and ID does not exists in the
library, each of the fields in the composite string will be
empty. Use the docidexists() function to determine if a
document exists.

getfile(filename$)

Returns contents of filename$ as a string. Can be used
to load values from text files.

getfilefield(filename$,key$, field)
getfilefield(filename$,key$,field,dIm$,quoted
)
getfilerec(filename$,key$)
getfilerec(filename$ key$,dIim$,quoted)

Returns a record or field from a text file, given a key
that matches the first field in each record. The dim$
field is a field delimiter, such as "," or chr(9) for comma
or tab delimiters, and the quoted field is a Boolean
(O=false, non-0=true) that indicates fields may be
quoted, as would be the case in a classic csv file. If no
matching key is provided, the functions return an empty
string. 1f no dIm$ and quoted parameter is supplied,
then a classic comma-separated-value format is

7N

presumed (dlm$=",", quoted=1).

These functions provide an efficient way of providing
data to UnForm from applications. For example, an
application could export customer IDs and email
addresses, and UnForm could lookup addresses by
customer ID.

Files are parsed once and cached until they change, so
subsequent retrievals are very fast. Caching is
permanent (across jobs).

Keys are limited to 127 bytes, so the first column must
be limited accordingly.

UnForm Version 7.0

15

In a quoted file, fields that contain a quote character
must escape that character with a backslash, like "Board
- 1' 2\" length".

getinival(filename$,section$[,name$])

Returns the section or, if name$ is supplied, the value of
the name in the section specified, of the .ini formatted
file specified. .ini files are organized in to sections via
[name] headers, and lines within the section contain
name=value pairs. When a full section is returned, each
line is delimited by a linefeed character (chr(10) or
$0a$). This can be useful in cases where data is stored
in .ini file format and UnForm needs to access it.

getpage(n,arr$[all])

Fills text array arr$[all] with page n data lines.

getppdval(name$,option$)

Returns a value from the PPD file associated with the
job, either a default file selected by the —p driver
command line option, or one explicitly named with a —-m
command line option. PPD files are generally used by
PostScript printers to define command sequences for
settings like duplex, bin, and tray selection. The laser
driver can also use a custom PPD file for defining PCL
sequences for various printer options. This function can
be used to retrieve control sequences for use in boj, eoj,
bop, or eop values.

getsubids(lib$,doctype$,docid$[,dIm$])

Returns a list of document archive sub ID’s, delimited
by linefeeds or by the specified delimiter.

inchtocols(inches)
inchtorows(inches)

Return columns or rows, given a measurement in inches.

inspage(n,arr$[all])

Inserts text array arr$[all] as page n, shifting existing
pages as necessary. If nis any number greater than the
highest page number, or -1, a page is appended (i.e.
inspage(999,x$[all]) will add page 3 to a 2-page job.

Ibound(arr$[all][,dimension])

Returns the lower-bound of the array arr$[all]. If arr$
contains multiple dimensions, you can specify which
dimension. For example, if arr$ is dimmed as
x$[100,1:2], Ibound(x$[all])=0, Ibound(x$[all],2)=1.

libexists(lib$)

Returns O if library lib$ doesn't exist, or 1 if it does.

log(msg$)

Writes a log entry to the server log file, usually
uf70d.log.

log(msg$,logfile$)

Logs a message (time stamped) to the specified file. The
file is created if necessary.

[trim(str$)

Returns the value of str$, trimmed of leading spaces.

mset(col,row,cols,rows,value$)

Multi-line set function. Will work with multi-line
value$, delimited with mnemonic \n character sequences

UnForm Version 7.0

16

or chr(10) values.

msfax(filename$, faxnum$, tags$, errmsg$)

Faxes filename$, normally an UnForm-generated PDF
file, to the fax number specified in faxnum$. Numerous
supported tags can be specified in tags$, in the format
tagl=value,tag2=value,... Requires the Windows
Support Server.

pdftoimage(fromfile$,tofile$,format$[,resolut
ion[,errmsg$]])

Uses Ghostscript, local to the server or via the Windows
Support Server, to convert from PDF file fromfile$ to an
image file tofile$, using the format format$. Valid
formats match those of the Ghostscript drivers defined
in uf70d.ini.

prm(“name”)

The prm() function has been added as a synonym to the
gbl() and stbl() functions, which return global string
table values typically associated with the —prm
command line option.

putdocidprop(lib$,doctype$,docid$,prop$)

Updates the document properties of the document type
and ID in the library specified. The document properties
are replaced with the values found in the composite
string prop$. These string properties are:

Prop.date$ - date in yyyymmdd format

Prop.time$ - time in hhmmss format (24-hour clock)
Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line breaks
Prop.keywords$ - semi-colon delimited keywords
Prop.categories$ - semi-colon delimited categories with
pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

All properties found in the string are updated, so you
must first read existing properties using the
getdocidprop() function, then modify those properties
desired, then update them with this function.

This function will not add new documents to a library.
It only updates existing ones.

putpage(n,arr$[all])

Replaces page n with text array arr$[all].

rtrim(str$)

Returns the value of str$, trimmed of trailing spaces.

sshost(server$,port)

Sets the Windows Support Server hostname and port.
Default values are defined in the uf70d.ini file in the
sshost and ssport settings. This command allows for
dynamic changing to a different server.

striplines(text$)

Returns text$, stripped blank lines from multi-line text,
such as addresses. As a byproduct, all CR characters are
also removed, leaving simple LF line delimiters.

UnForm Version 7.0

17

strtoarr(str$,arr$[all],dIm$) Converts string str$ to an array arr$[all], by splitting str$
on delimiter dim$

subidexists(lib$,doctype$,docid$) Returns 1 if the document type, document ID, and sub
ID exists in the library, or 0 if not.

textwidth(text$,fontnum|fontname$,size,attr) | Returns the text width in columns of text$ given the font
number or name, size in points, and style attribute
(O=normal, 1=bold, 2=italic, 3=bold italic). The
function honors the same font mapping as is used in
regular UnForm processing for pdf, and understands the
same fonts that are understood for internal calculations
for justification, where laser fonts are loaded from the
standard fonts.txt file, pdf fonts are mapped from these,
and postscript fonts are loaded from .afm files in the
psfonts directory. For Postscript, the width is based on
the Windows ANSI symbol set.

ubound(arr$[all][,dimension]) Returns the upper-bound of the array arr$[all]. If x$
contains multiple dimensions, you can specify which
dimension. For example, if arr$ is dimmed as
x$[100,1:2], ubound(x$[all])=100, ubound(x$[all],2)=2.

BLOCK IF IN CODE BLOCKS

The code block parser now supports a blocked if-then-else structure that makes long conditional logic
easier to edit and read. The new structure looks like this (optional elements enclosed in square
brackets):

If condition [then]:

Statementl
Statement2
[else
Statementl
Statement2
e]
End if

The key elements are the colon (:) at the end of the “if condition” line and the closing “end if”. The
structures can be nested, with additional if statements inside the if or else sections.

MISCELLANEOUS ENHANCEMENTS

A new —color command line option has been added as a synonym for -ci (color image default).

Image caching has changed. Caching is automatic whenever an image is converted from non-native
format. Images are stored in images.dat, and images unused for a period of time are automatically

UnForm Version 7.0 18

purged. Any change in the source image (size or date) will result in a re-convert/cache. If for some
reason a site needs to clear the cache, simply remove images.dat and it will be re-created.

A new option nocache is honored by the image command to prevent cache storing on a given image
command, in cases where images are used only once and caching would waste disk space. The old
""cache" option is ignored.

The image command also supports two other new options supported by the Windows Support Server,
gamma n and rotate n. The gamma option can be used to adjust color during the image conversion and
scale operation, which can be useful in situations where an image is too dark when rendered on a printer.
A new command line option -ce "list" enables selected copies in the list. The list is comma-delimited
and support ranges: -ce "1,3,5-9". The option is particularly useful in subjobs designed to email or fax
selected copies, and can be passed in the command line arguments of the jobexec() function and in the
archive command.

Wrapping in the text command has been optimized, so long paragraphs of text can be word wrapped
without a performance penalty.

PDF metrics have been updated from Adobe metric files, so should be more accurate than in prior
releases.

New global and local synonyms for const have been added.
Logging options have been added to the email command and the email() function.

The const command (and local and global synonyms) now supports names up to 255 characters and
values up to 65,536 characters.

UnForm Version 7.0 19

CLIENT-SERVER ARCHITECTURE

UnForm utilizes a client-server architecture, where the UnForm processing of documents can occur on a
different machine from the application. The resulting enhanced document can be printed, emailed, sent
to a fax gateway, or stored at the server, or can be returned to the client machine for printing or storage
from its perspective. One important benefit of using a client-server model is that the application process
that is sending jobs to UnForm via the client software need not wait for the job to finish if the server will
be handling the output. This provides better performance to the application user, particularly for large
or complex jobs that take time for UnForm to process.

The UnForm server can run on either UNIX or Windows systems. The server provides the UnForm
processing logic and a listener, which handles job requests from clients located on the network.

The UnForm clients can be installed anywhere on the network, on Windows or UNIX systems. On
Windows, the client is a native Windows executable. On UNIX, the client is a Perl program, so UNIX
systems require Perl level 5.005 or above. Clients perform the application interface work, taking input
from the application, submitting it to the server, and in many cases, returning the result back to the client
for processing.

There is nothing to prevent the same machine from acting as both client and server, and in fact, the
server installation automatically installs a client on that machine. Submitting a job to 'localhost’ when
the client and server run on the same machine can improve performance, as job data need not be
transferred over the network.

For complete information about how to operate the client and server programs, read the Command Line
Options chapter. In general, on Windows the server is operated from the Status Monitor option or as a
Windows service, and on UNIX the server is operated like this:

uf70d start
uf70d stop

The client supports an extensive set of options. Some simple examples:
cat samplel.txt | uf70c —f simple.rul | Ip —dhp —oraw
uf70c —i samplel.txt —f simple.rul —o "">lp —dhp —oraw""
uf70c —i samplel.txt —f simple.rul —p pdf —o client:samplel.pdf
In the first example, uf70c submits the job and returns the result to its spooler. In the second example,

uf70c submits the job and the server prints the result to its spooler. In the third example, uf70c submits
the job requesting PDF output, and returns the result to its file samplel.pdf.

UnForm Version 7.0 20

SERVER INSTALLATION

UNIX Server CD installation instructions:

1.

2.

Login as root.

Mount the CD as a file system that supports lowercase file names. If you are unsure how to do
this, check your man pages: man mount. The following table illustrates sample mount
commands for various operating systems, assuming standard CD device names and that the
mount directory /mnt is available. You may need to adjust these commands according to your
configuration.

SCO UNIX OS5 mount —o lower /dev/cdO /mnt

SCO UNIX mount —r —f HS,lower /dev/cd0 /mnt

Unixware mount —F cdfs —r /dev/cdrom/cdrom1 /mnt

AlX mount —vcdrfs —r /dev/cd0 /mnt

Sun Solaris mount —rt hsfs /dev/srO /mnt

HP/UX mount —r —F cdfs —o cdcase /dev/dsk/c1d0s2 /mnt

Change to the UnForm70 UNIX directory in the mount directory: cd /mnt/unform70/UNIX
Run the install script: ./install.sh, or if you do not have execute permission to the file,

sh install.sh. You must agree to the license agreement, then you will be presented a list of
operating system versions. Choose the correct version for your system.

UnForm will then be installed to the selected directory, and the set up script ./ufsetup.sh will be
automatically executed in the UnForm directory.

The ufsetup.sh script will create two scripts, called /usr/bin/uf70c and /usr/bin/uf70d. The uf70c
program is the client, while uf70d manages the server.

Activate demo mode, or activate permanently, using ./license.sh.
Start the server: uf70d start
Use the uf70c —v command to ensure UnForm is installed and set up correctly. The output from

this command will display information about the installation. Note that uf70c requires Perl
version 5 or higher.

See the Licensing section for additional activation information.

Note that you will probably want to place the uf70d start command in your system boot scripts, often
found in the /etc/init.d directory or a similar location, depending on your version of UNIX.

UnForm Version 7.0 21

UNIX Server download installation instructions:

1.

2.

Login as root.
Create a directory to hold the UnForm files, and change to that directory.
Example: umask 0

mkdir /usr/unform?

cd /usr/unform7

Uncompress and extract UnForm from the download file.

uncompress uf70_xxx_tar.Z
tar xvf uf70_xxx_tar

Execute the UnForm set up script.
Jufsetup.sh

The ufsetup.sh script will create two scripts, called /usr/bin/uf70c and /usr/bin/uf70d. The uf70c
program is the client, while uf70d manages the server.

Activate demo mode, or activate permanently, using ./license.sh.
Start the server: uf70d start
Use the uf70c —v command to ensure UnForm is installed and set up correctly. The output from

this command will display information about the installation. Note that uf70c requires Perl
version 5 or higher.

See the Licensing section for activation information.

Note that you will probably want to place the uf70d start command in your system boot scripts, often
found in the /etc/init.d directory or a similar location, depending on your version of UNIX.

UnForm Version 7.0 22

Windows Server installation instructions:

1.

From the CD, use Explorer to locate the D:\unform70\win directory, and double-click the
setup.exe program (use Control Panel Add/Remove Programs if the system supports Terminal
Services). If you downloaded UnForm from the Internet, simply execute the downloaded
executable (use Control Panel Add/Remove programs if the system supports Terminal Services).
Follow the on-screen prompts from the installer to install UnForm to your system. This will
install both the uf70d.exe server program and the uf70c.exe client program. The client program
and its associated support files will be installed in the Windows directory, enabling a command
line launch without a full path, as the Windows directory is always included in the PATH
environment variable.

Click the Server Configuration option from the Start menu. This will conditionally rename
certain files and prompt for several configuration values. The values entered are stored in
several local .ini files in the UnForm server directory. You can also use the Configure button
from within the UnForm Server Manager.

Click the Server Manager option from the Windows Start, Programs, UnForm 7.0 Server menu.

Activate the demo mode, then if desired, activate permanently, by pressing the Licensing button
and using the form that displays. On line help is available if needed.

Click the Start button from the Server Manager to start the server manually.

Use the Server Version option from the Start menu to ensure the server is running properly and
the client can operate from the server computer. The output from this command will display the
version and licensing information.

If desired, and you are running the server on Windows NT, 2000, XP or any of the Windows
variants that support NT Services, you can install the server as a service by running the Install
as a Service option. When the UnForm server is run as a service, it is automatically started
when Windows boots up. You must start and stop the service using the Windows Services
applet, found in the Control Panel Administrative Tools option. The UnForm Server Manager
options for starting and stopping the server are disabled.

See the Licensing section for activation information.

UnForm Version 7.0

23

CLIENT INSTALLATION

The uf70c client software can be used to submit jobs to UnForm from anywhere on your network after
the server is installed and operating. The client software is automatically installed on the same machine
as the server, so jobs can be submitted locally. However, you can install the client software on any
network computer. Any client can talk to any server, so you can mix and match different operating
systems as you need. For example, you could install the Windows server, and have both Windows and
UNIX clients submit jobs to it.

Clients must be installed on any machine that will be submitting jobs to UnForm. For example, in a
Windows network, with the UnForm server installed on a single network server, each workstation that
will be submitting jobs must have a client installed and configured to communicate with that server.

The UNIX client is installed from the file uf70c_tar.Z, while the Windows client installer is called
uf70c_setup.exe.

The UNIX install steps are as follows:

e Ensure the system has Perl level 5 or higher: perl —v
If not, Perl can be obtained from http://perl.com or http://cpan.org.

e Create a directory for the client, such as mkdir /usr/lib/sdsi/uf70client

e Set permissions on that directory: chmod 777 /usr/lib/sdsi/uf70client

e Copy the uf70c_tar.Z file to that directory and cd to that directory

e Uncompress the file: uncompress uf70c_tar.Z. If you have gzip, then the gunzip utility can
also uncompress the file.

e Extract the files: tar xvf uf70c_tar

e Run the setup script: ./uf70csetup.sh

e Edit the uf70c.ini file to set up the client configuration:

The uf70c.ini file looks like this:

[defaults]
server=localhost
port=2714
#logfile=uf70c.log
#mailto=root
retry=30

wait=2

Change the server= line to point to the server host name or IP address, and the port line to the proper
listening port configured in the server's uf70d.ini file. The port default is 2714, and will not normally be
changed. Note that the server and port can also be specified on the uf70c command line. The values
entered here serve as defaults.

UnForm Version 7.0 24

http://perl.com/

If you want uf70c to log errors, uncomment the logfile= line, setting the value to a log file name.

If you want uf70c to email (using the UNIX mail command) error messages to an administrator,
uncomment the mailto= line, setting the value to an email address available from the client computer.
Note that the Windows client does not support emailing of error messages.

The retry and wait lines set the number of times, and delay between tries, that the client will attempt to
connect to the server before giving up. If any retries are needed, and the log file is specified, then a
message will be logged.
On Windows, the installation steps are:

e Run the uf70c_setup.exe installer program.

¢ Run the Configure UnForm Client option from the Start menu. Enter the appropriate values
for the server and port, and optionally the log file.

UnForm Version 7.0

25

WEB SCRIPT INSTALLATION

One component of UnForm archiving is a Web browser-based interface for browsing, searching, and
viewing archived documents. The web script, a CGI executable, is used to enable Web browser access
to library archives when UnForm archiving is used. This script is called uf70a.pl on Unix/Linux, and
uf70a.exe on Windows, and is present in the UnForm server installation directory. The script must be
copied to a location where the local Web server can execute scripts. Once the script is copied and
configured, a Web browser can access it with the appropriate path, such as:

http://myserver/cgi-bin/uf70a.pl
http://myserver/scripts/uf70a.exe

Note the name of the script can be changed however appropriate.

Unix or Linux

If the web server is Apache, then there is generally a cgi-bin directory that can be used to host the
uf70a.pl script. It is also common to configure additional directories to support CGI scripts, so the web
server administrator may chose a different location. Alternatively, sometimes file extensions are
mapped to always execute as CGI scripts (.cgi for example), in which case uf70a.pl can be renamed to
uf70a.cgi and placed in any directory accessible to the web server.

Once the script has been copied to the correct location, verify that the script signature line (line one)
properly references the location of Perl on the system. The default is: #!/usr/bin/perl, but another
common location is #!/usr/local/bin/perl. Note the “#!” prefix is part of the syntax and is required.

Windows

Most IIS installations include a directory c:\inetpub\scripts, and this is a suitable place for uf70a.exe.
Alternatively, the web server administrator can define virtual directories that support scripting, and
uf70a.exe can be copied there.

Configuration

If the UnForm server is running on the same machine as the web server, and is listening on the default
port of 2715, then there is no configuration necessary. However, a file uf70a.ini, in the same path as the
uf70a script, can be defined with two lines in it to override these assumptions:

server=server name or IP address
port=listening port

Performance of the web interface is best if the web server and UnForm server are on the same physical

machine. If different machines are used, firewall configuration may be necessary to enable the web
server to connect to the UnForm server’s listening port.

UnForm Version 7.0 26

CONFIGURING THE SERVER

The server is configured via the uf70d.ini file, which can be edited with any text editor. On Windows,
many of these options can be configured with the Configure button in the Server Manager. In addition
to these items, you can also configure access to Ghostscript, Image Magick, or Image Alchemy
elsewhere in the uf70d.ini file. See the Configuring External Programs chapter for more details.

In the defaults and security sections, here are the values available:

[defaults] section

port=n

Sets the primary listing TCP/IP port to n. The default is 2714. Note that if
you use NAT translation or if you have a firewall between the clients and
server, then this port (along with the procports defined below) must be
configured to allow clients access.

logfile=path

Sets the name of the server's log file to path. By default, it is stored in the
UnForm directory. Standard log entries include connection information.
Detailed logging includes verbose data transactions.

logdetail=n

Set n to O for standard logging, 1 for detailed logging. You should not
leave detailed logging enabled for normal use, as the log file can grow very
large.

timeout=n

Set n to the number of seconds that a connection can remain idle before
closing. The default value is 3600, or one hour. Setting this value to 0 will
avoid timeout-based disconnects. This value primarily affects designer
connections, which can remain active for long periods.

age=n

This value sets the maximum age, in days, of job log entries. When jobs
are submitted, basic job information is kept in a log file. If errors were
recorded, the error file also remains in the temp directory under the
UnForm server. After this many days, the files and log entries are
automatically removed.

rulefile=path

Sets the default rule file to path, used for jobs that do not specify a rule file
on the command line.

bbpath=path

If the bbxread() function is used, this value points to the BBx executable
that is invoked when required, such as /usr/lib/basis/pro5/pro>5.

library=path1;path2;...

Sets directory paths that are automatically searched for rule files, images,
and attachments. By default, UnForm searches the UnForm directory and
also supports full paths.

sshost=host

Sets the default host IP address or name of the Windows Support Server.
In addition, the sshost() function can be used in a code block to specify the
host and port at run-time.

ssport=port

Sets the default port to connect to the Windows Support Server on the host
specified by sshost.

imageage=days

Images that are converted by an external conversion program or by the
Windows Support Server are cached by default. The last date an image is
used is also stored, and images that have not been used in days days are

UnForm Version 7.0

27

removed automatically.

stylesheet=name

Sets the name of the style sheet used by the archive browser interface
programs. A file called “default.css” is provided with the server
installation (found in the web/en-us directory). This style sheet is also used
when archives are exported to static HTML structures.

bufsize=bytes

An initial block is tested for each job in order to determine if the job
contains binary data or text data. The size of this block defaults to 8196
bytes, but you can adjust it to any integer value with this entry. The
minimum value is 1024.

[security] section

allow=list

This is a semi-colon delimited list of valid IP addresses or wildcards that
are allowed to connect to the server. Note that the loopback address
127.0.0.1 is always allowed to connect. The default list is

192.* *.*:10.*.*.*, which allows the two standard non-routable LAN
spaces to work.

hideconn=n

This value, which defaults to 1, is supported on Windows installations. If n
is 0, and the server is running as an application rather than a service,
connections show up on the task bar. Otherwise, they are hidden.

[tcpports] section

port=options

Each line defines a port on which the server listens for raw print job
deliveries, such as from Windows TCP/IP ports. Each job submission is
then processed using a uf70c command line configured with a pre-defined
-ix option plus any other options defined. For more information, see the
TCP/IP Monitor chapter.

[archive] section

deflib=defaultlib

Sets the default library name, for use when archive commands do not
specify a library name. This library will be placed under the default “arc”
subdirectory below the UnForm server.

keywords=n

Specifies the maximum number of default keywords generated for UnForm
job-based archives. Default keywords are unique words generated from the
job input stream that do not match patterns defined in the nonwords= file.
If this value is set to -1, then all unique words become keywords. The
benefit of this is that more words of job print streams are available for
searching. The cost is greater time spent parsing reports for words and
additional disk space utilization.

nonwords=file

Specifies a file which contains lines of regular expressions for “words” that
should not become keywords. See ufnonwords.txt for examples.

nonchars=charlist

This is a list of characters that are removed from keywords. The default
list provided with UnForm is: <>{}[]()*=~""+|

endchars=charlist

This is a list of characters that are removed from the end of keywords. For
example, you may want to remove periods from the ends of words as a

period typically ends a sentence. The default list provided with UnForm is:
20

searchage=days

When archive searches are performed in the Web browser interface, work
files are generated. This sets the maximum number of days these files will

UnForm Version 7.0

28

remain on disk.

webdirs=dirl;dir2;...

If you need to support multiple languages, or you wish to offer a
customized user interface for archive browser users, you can copy the
Jweb/en-us directory to other ./web/* directories and customize them. In
particular, the messages.txt file and various html templates or style sheets
can be customized. This directory list (and associated name=title values in
each messages.txt file) are presented in the browser login screen.

sesage=hours

Set the number of hours a browser session can last before a login is
required again. By setting this to 0, browser users must login each time
their web browser is re-started and the web interface is accessed. Setitto a
large number to allow users to login once per workstation and have that
login remembered.

defperm=perms

Sets the default permissions on new libraries. Set to zero or more semi-
colon delimited letters, r, w, and d for read, write, and delete. For example,
defperm=r;w for default read and write, or defperm=r for just read only, or
defperm= for no default permission, meaning only administrator logins can
access the library initially.

defseq=0or 1

Sets the default Force Sequence on Sub ID flag value for new libraries. If
set to 1, then sub ID’s are auto-sequenced to prevent overwriting.

[mailcall] section

name=value

The mailcall section can be used to define mailcall values not available in
the email command and email() code block function, such as timeout or
bodymime, or to provide a default setting if the command or function
doesn’t supply a value (or supplies a null value). Any options not set in an
email command or function will be filled in with values in this section.

For example, if you want a bcc sent to a local support account by default,
add a line that says bcc=email address. Or, if you find that the default
timeout of 30 seconds isn’t enough time for a slow internet connection, add
a line like timeout=60.

Note also many parameters are stored in the ufparam.txt file. You can create a custom version of this
file, called ufparam.txc, which will be used instead of ufparam.txt. Any new parameters that are added
during a release cycle are documented in the readme.txt file, and can be added manually to keep
ufparam.txc up to date if necessary.

UnForm Version 7.0

29

CONFIGURING EXTERNAL PROGRAMS

The UnForm server supports the use of three external programs for handling two tasks: image scaling
and conversion, and document imaging conversion.

For image scaling, you can configure either Image Alchemy, a commercial product available from
Handmade Software (http://handmadesw.com), or Image Magick, an open source product available from
http://imagemagick.com. Once configured, image scaling is automatically used when an image
command contains size information and the image file is not a native laser or PDF file.

For document imaging conversion, you can configure Ghostscript, an open source or commercial
product available from http://ghostscript.com. Document imaging is managed by the —p command line
argument, and it enables a series of additional drivers, such as tiff, postscript, and png.

Once the appropriate programs are installed, then edit the uf70d.ini file to configure them.

Use the [images] section to configure Image Alchemy or Image Magick, first by defining a
converter=path entry, where path is the execution path of the alchemy or convert programs. If the path
is in the operating system's PATH variable, then just a simple name will be required. Since the server,
uf70d, will be executing the program, you should make sure that the user under which it runs includes
the proper environment variable definitions. For example, Image Magick uses a variable called
MAGICK_HOME.

In addition to the executable, define several command line argument lines for pcl, pclc, and pdf, and
optionally others that can be called out by the option item of the image command. Generally, you can
simply uncomment the proper lines for Alchemy or Magick. The pcl command is invoked for laser
output, and the pdf command is invoked for PDF output. If the image command's color option is used,
or the —ci command line option is used, then the pclc command is invoked. Below is a sample uf70d.ini
[images] section, with Image Magick enabled:

[images]
External image conversion/scaling program setup

1) Define program path: converter=pathname
Use a full path if necessary, as this becomes a system call in UnForm.
On Windows, this will very likely be necessary.

2) Define arguments to be passed to converter for pcl, pclc, and pdf.
Use %I for input image, %o for output, %d for dpi, %x for width, %y Ffor height
pdf should not contain %x/%y, as scaling is performed by Acrobat.

Options passed from image command line can be appended to the name with a dash.
i.e. image 10,10,10,10,"image.-bmp™,option 123 would use pcl-123 or PDF-123.
Options can be up to 10 characters long, and are case sensitive.

HHHF HHFHF HHH

Examples for Image Alchemy:

#converter=alchemy

#pcl=""%1" "%0" -0 -Q -D %d %d -+ -Xc¥%x -Ychy -P 103 >/dev/null 2>&1
#pclc="%i" "%0" -0 -Q -D %d %d -+ -Xc%x -YcW%y --r 9 >/dev/null 2>&1

UnForm Version 7.0 30

http://handmadesw.com/
http://imagemagick.com/
http://ghostscript.com/

#PDF=""%1" "%0" -0 -Q -D %d %d --d -8 >/dev/null 2>&1

Examples for ImageMagick:

converter=convert

pclc="%i1" -density %dx%d -colors 256 -dither -resize %xx%y "%0" >/dev/null 2>&1
pcl="%i1" -density %dx%d -monochrome -resize %xx%y "'%o" >/dev/null 2>&1

PDF="%i"" -density 300x300 -colors 256 "%0" >/dev/null 2>&1

#PDF-72="%i"" -density 72x72 -colors 256 "%o" >/dev/null 2>&1

PDF-72, above, is a 72 dpi image conversion, and would be specified

with "option 72" in an image command. The resulting file will be much
smaller than the 300 dpi image shown in PDF=, though quality may suffer
too much for use, depending on the image itself.

Use the [drivers] section to define the Ghostscript-hosted imaging drivers. When this feature is enabled,
the —p driver option supports a series of new names, all derived from an intermediate PDF document
that is converted at the end of the job to the specified format. First, enable the gs=path line to instruct
UnForm how to run Ghostscript. On UNIX, this is often just the word "gs", while on Windows it is
often a full path to the gswin32c.exe program.

The “pdffitpage=n" option is used to indicate if this version of GhostScript supports the —dPDFFitPage
option, which was added to GhostScript at version 8.10. If this value is 1, then UnForm can optimize
management of PDF files added to a job using the images command. Without this capability, all images
must be converted to full page sizes and then scaled. Note that an alternative to using a server copy of
GhostScript is to set up a Windows Support Server and execute GhostScript on that machine. This
enables sites running older versions of Unix or Linux to access current versions of GhostScript. To
force the use of the Windows Support Server, disable the gs=path line (#gs) and use the sshost setting or
code block command to enable use of the Support Server.

Note the pdffitpage=n feature was added at UnForm version 7.0.09.

Other entries are simply name=device,multipage,dpi, where name is the UnForm driver name, device is
the —sDEVICE name used by Ghostscript, multipage is a 0 or 1, where 1 means the output is multi-
page=multi-file and 0 means all pages go to a single file, and dpi is the dots-per-inch resolution.

Note that the use of multi- or single-page output is often dependent on the image format. For example,
bmp files do not support multiple pages per file, while tiff files do.

Note that the graphical designer may rely on the png entry shown, depending on how it is configured.

[drivers]

enable Ghostscript drivers by uncommenting the gs= line

gs=gs

windows would typically need a full path

gs=c:\gs\gs8.xx\bin\gswin32c.exe

pdffitpage=0

driver lines are structured as name=gsdevice,multipage,density
gsdevice iIs the Ghostscript sDEVICE value

multipage is Boolean 0 or 1, 1 means -o file is file<page>.ext

UnForm Version 7.0 31

Many formats require a 1, as the image format supports only a
single image per file.
density iIs output density, as hhh[xvvv] (horizontalxvertical) dpi

bmp=bmp256,1,300
bmpmono=bmpmono, 1,300

tif=tiffcrle,0,300
tifmono=tiffg3,0,300

png=png256,1,300
pngmono=pngmono, 1,300

Jpeg=jpeg,1,300
ps=pswrite,0,300

eps=epswrite,1,300
deskjet=deskjet,0,300

UnForm Version 7.0

32

TCP/IP MONITOR

UnForm includes a TCP/IP monitor program that can watch for raw print jobs arriving from network
computers, similar to how an HP Jet Direct card would. In effect, the UnForm server can serve one or
more virtual Jet Direct ports, each with an associated UnForm client command line.

The monitor is automatically started if there are one or more port configuration lines defined in the
[tcpports] section of uf70d.ini. For example:

This line would print to the server's spooler —dlaser device, processing jobs through the acme.rul file:
9100=-0 ">Ip —dlaser —oraw"™ —f acme.rul

This line would print to a Windows server shared UNC printer, processing jobs through the acme.rul
file:

9101=-0 \\winsrv\laserl -f acme.rul

This line would generate pdf files to the path specified, using the date and job number to generate
unique names:

9102=-0 "/usr/pdfs/%d.%j.pdf" —p pdf

The following substitutions are made in the command line definition:

Characters Substitution

%d The date in YYYYMMDD format.

%ot The time in HHMMSS format, using a 24 hour clock.

%p The process ID (this is not necessarily unique).

%]j The sequential job number, which is an ever-increasing unique number.

When jobs are submitted to the UnForm server in this manner, it is important to realize that the
submission is one-way, and once printed the job resides entirely on the server. It is therefore not
possible to print a job and have data returned to the client (i.e. —o client:device), or to have PDF
previews generated on the submitting workstation (-p winpvw). Once the job is submitted to the TCP/IP
monitor, it becomes local to the UnForm server, as if uf70c is physically run on the server (which, in
fact, is what happens).

When jobs are submitted, they are dropped into the rpg/ subdirectory under the UnForm server
installation. All submission files are given a unique name with a ".in" extension, and a companion file
with a ".cmd" extension is also created that contains the command line options. As jobs are received,
and also at least once every 5 seconds, a sweep is made of newly submitted jobs, each submitted to the
server via the server's local "uf70c"” program. As a byproduct, you can drop jobs into this directory

UnForm Version 7.0 33

independently of the server, being careful to create the ".cmd" file first, then the associated, complete
".in" file, using your own unique naming algorithm. Note that the sweep assumes that any *.in file is a
complete file and will have an associated .cmd file, so it is incorrect to open a .in file and begin writing
to it, as the sweep may attempt to process an incomplete file. Instead, create the file with a different
extension and then rename it when it is ready for processing.

To configure Windows printers to submit jobs to this monitor, you can use the built-in Windows support
for TCP/IP printers. When configuring a printer, you can choose to Add a Port, selecting Standard
TCP/IP Port. The Printer name or IP address of the "printer” will be the UnForm server, the Protocol is
"Raw", and the Port Number is the number of the configured port line defined in uf70d.ini. Be sure to
use the Generic/Text Only print driver when defining printers to use this port, as UnForm requires plain
text input streams.

The picture below shows a Windows XP example of the configuration screen:

Configure Standard TCP/IP Port Monitor

Port Settings

Port Name: inhouse2715

Printer Name or [P Address: inhouse

Pratocal

(%) Raw _JLPR

Faw Settings
Port Mumber: 5101

LPR Settings

[]5MMP Status Enabled

[oK][Cancel]

Note that other operating systems also support methods of supporting raw TCP/IP printers. For
example, Linux contains the "jetdirectprint” script that is used by LPRng to send jobs raw TCP/IP
devices.

UnForm Version 7.0 34

INTEGRATING UNFORM WITH BBX

BBx handles printers via alias lines in a configuration file, typically called config.bbx. Printer alias
lines identify a name, an output designation, a description, and several mode options. To incorporate
UnForm into the configuration file on a UNIX system, you need only include an UnForm command line
as part of the output designation.

BBx output designations can specify files, physical devices, or pipes, and UnForm can be installed to
work with any type of definition. Note that any escape sequences configured in modes like PTON, SP,
and CP are sent to UnForm and therefore need to be PCL sequences. UnForm understands how to strip
a job of PCL codes, but not other printer codes. In some cases, when UnForm sends a job straight
through without enhancements, these PCL sequences will also be passed on.

UNIX Aliases

A printer alias line on UNIX generally pipes to a program, such as the uf70c client program. This client
program in turn can pipe its output to the spooler, or to a file, or it can instruct the server to handle the
output from its end, by specifying the —o option.

Here is a sample alias line that pipes through UnForm to the local spooler:
alias P1 "'|uf70c -f my.rul | Ip -dxyz —oraw -s 2>/dev/null™ "*Printer Name" ... various modes ...

Here is a sample alias line that instructs the server to print the job to its spooler. The advantage of this
type of configuration is that the client doesn't have to wait for the job to finish. It submits the job to the
server and exits quickly.

alias P1 "'|uf70c -f my.rul -0 \'>lp -dxyz —oraw\"" ""Printer Name'" ... various modes ...

Note the use of the —oraw option in the above examples. It is important for UnForm's output to be
handled as binary data by the spooler. The —oraw option is used by some UNIX spoolers, such as the
SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,
such as "-o0-dp" for AIX, =T pcl for Unixware, -b for some older Linux installations. Check your Ip
configuration tools or man pages for the appropriate settings for options such as "binary"”, "raw", or
"pass-thru” printing.

UnForm can also print directly to a device, as in this example:

alias P1 "'|uf70c -f my.rul -o /dev/Ip0" ""Printer Name™ ... various modes ...

Note that this line will behave differently with the UnForm pipe than without. When opening and
sending output directly to a device, printing will occur immediately, without closing the device.

However, with the pipe to UnForm, the output will not appear until the device is closed. The
application may need to be modified to account for this if UnForm is to be used in this circumstance.

UnForm Version 7.0 35

Windows Alias Lines

Under Windows, where pipes are not available, change the printer definition to create a file, and then
use a post-processing mode, called EXECOFF, to execute UnForm with options to read the file and
output to a device.

A Windows alias line will look similar to this:

alias P1 C:/TEMP/PL.TXT "UnForm Printer" CR, LOCK=C:/TEMP/P1.LCK, O_CREATE,
SPCOLS=132, SP=1B451B287331362E3636481B266B3247, EXECOFF="uf70c.exe -ix
C:/TEMP/P1.TXT -o device -f my.rul*

In the above example, a file called P1.TXT is created, using the mode O_CREATE to create the file if it
doesn't exist, and using a lock file to prevent two users from writing to the same file at the same time.
Note that if a file is specified with a local workstation path, such as C:\\P1.TXT, then a lock file is
probably unnecessary. Just remember to specify the same path in the —ix option. Once the printer is
closed by the application, the code specified by the EXECOFF mode is executed, which runs UnForm as
an executable, using the P1. TXT file as input and the printer as output.

Note that pathnames containing backslashes will need double backslashes, due to the way BBx parses
the command line. For example, to refer to "uf70c.exe -i c:\data\p1.txt ...", you would need to specify
"uf70c.exe -i c:\\data\\pl.txt ...". You can also use forward slashes in place of backslashes, and you
don't need to double them.

The device in the —o argument can be one of two things:
e An LPTn port, which can be mapped to a UNC device name with the Windows "net use"
command.

e A UNC device name, defined by sharing a printer, so the name becomes //system/printer, where
system is the system with the shared printer, and printer is the "share name" of that printer.

Another variety of alias line can generate a temporary PDF file and display it on the client PC, assuming
you have an Adobe Acrobat Reader installed. This alias doesn't require a —o argument, but will honor it
as the client-side file name for the PDF document generated. The driver selected by the —p option must
be either win or winpvw, like this:

alias PUNF C:/TEMP/PUNF.TXT "*UnForm Printer"

CR,LOCK=C:/TEMP/PUNF.LCK,O_CREATE,SPCOLS=132, EXECOFF="uf70c.exe -ix
C:/TEMP/PUNF.TXT -p winpvw -f my.rul*"

Note that the uf70c client software must be installed locally on any workstation that will execute it
to submit jobs.

UnForm Version 7.0 36

INTEGRATING UNFORM WITH PROVIDEX

Simple UNIX Integration

On UNIX systems, you can integrate UnForm within the link file as the output device, and use a
standard LaserJet or plain text print driver. The device used in the link file would be simply a re-direct
to the uf70c program (if using ProvideX 6.0 features, a pipe (| rather than >) can be used as well), such
as ">uf70c —f acme.rul —o '>lp —dhp —oraw"'.

Note that this option was not available in prior versions of UnForm.

Integration using the ProvideX Print Driver uf7ptr
This method works for both UNIX and Windows environments, and provides more program control
over the UnForm options when executing the uf70c client.

UnForm 7 installation includes a ProvideX print driver uf7ptr which should be copied to your ProvideX
lib/_dev directory. This driver provides platform-independent support for UnForm, along with
additional capabilities for managing UnForm command lines from the ProvideX application. In
addition, it supports WindX-based output. Once copied to your ProvideX lib/_dev directory, this driver
is available to use when defining ProvideX link files, which are used as printers in ProvideX.

To use the uf7ptr print driver:

When a link file is defined, you specify an output device and a driver program. The output device is
generally something system specific, like ">Ip —dhp —oraw" on UNIX, or /SERVER/PTR on Windows,
or it can be a special driver name for Windows, such as *windev*, or [WDX]*windev*. In some cases,
it can be /dev/null or NUL, if the driver will be directing output somewhere for the user.

The uf7ptr driver determines a default output device based upon the link file's specified output, and then
re-routes the printer output to a temporary work file.

It then looks for a configuration file for additional uf70c command line parameters. This file is simply a
text file named linkfile.unf. For example, for a link file named P1, uf7ptr will look for a file called
P1.unf for additional parameters. In this text file can be one or more lines with uf70c command line
options.

Once the file-based parameters have been loaded, uf7ptr then looks for the OPT value that was used in
the OPEN directive, if any, for additional parameters. Any parameters named in the OPT value will
override those found in the configuration file.

When all parameters have been resolved, a uf70c command line is built for execution at the end of the

job. In cases where the output needs to be returned to a WindX client, the driver handles uf70c
appropriately to create local output and copy that output back to the WindX PC.

UnForm Version 7.0 37

Example 1:

LP is a link file pointing to device /dev/null.
LP.unf contains: -p pdf.

invoiceno$="00015"
OPEN(1,0pt="-0 /archive/"+invoiceno$+".pdf")"LP"

The result will be an uf70c command like this, which executes when the printer is closed:
uf70c —i workfile —p pdf —o /archive/00015.pdf
Example 2:

P1is a link file pointing to device ">lp —dhp4000 —oraw".
No P1.unf file is defined
OPEN(1,0PT="-f acme.rul")"P1"

This will override the default rule file defined at the server, using acme.rul. Output will go to ">Ip -
dhp4000 -oraw™ on the machine where the UnForm server is running. Typically this is the same
machine that runs ProvideX. If it is not, add a —server servername option to OPT or linkfile.unf. In such
a case, if the >lp command isn't valid locally, you will need to add a —o option to the configuration and
change the link file to point to /dev/null (or NUL on Windows).

Example 3:
P2 is a link file pointing to device [WDX]*windev*.
Opening P2 will result in laser output being produced and sent to the WindX printer selected.

Example 4:

P3 is a link file pointing to device NUL.

P3.unf contains —p winpvw.

Opening P3 will cause production of a temporary PDF file. This file will automatically be viewed on a
WindX client or in a Windows ProvideX session.

UnForm Version 7.0 38

INTEGRATING UNFORM WITH NON-BUSINESS
BASIC APPLICATIONS

UnForm is capable of interfacing with any application that can provide it with text input. On UNIX; this
integration is generally performed via pipes, similar to the way it is integrated with BBx. On Windows,
your application must print to a text file, and then launch uf70c.exe when the printing is complete.

If your application prints by opening a pipe to the spooler, just insert UnForm into the pipeline:
Before: |lp —dprinter —s 2>/dev/null
After: |uf70c —f rulefile | Ip —dprinter —oraw —s 2>/dev/null

|uf70c —f rulefile —o ">Ip —dprinter —oraw'

The second option, above, submits the job for printing on the server, while the first option will wait for
the server to return the job for local printing on the client.

If your application prints to a device, such as "/dev/Ip0", then you can probably modify it like this:
Before: /dev/Ip0

After: >uf70c —f rulefile —o /dev/Ip0

Note the use of the —oraw option in the above spooler examples. It is important for UnForm's output to
be handled as binary data by the spooler. The —oraw option is used by some UNIX spoolers, such as the
SCO LaserJet model script, and the CUPS printing system. Other spoolers require different options,
such as "-o0-dp” for AIX, =T pcl for Unixware, -b for some older Linux installations. Check your Ip
configuration tools or man pages for the appropriate settings for options such as "binary", "raw", or
""pass-thru™ printing.

In the case of direct device output, you will need to develop a site-specific mechanism for turning off
post-processing on the device, either permanently, or while an UnForm-modified job is printing.

If your application cannot print to a pipe, or runs on Windows, then your application can be modified to
print a text file, then execute UnForm when complete. Your environment may provide a way to do this
automatically, such as the EXECOFF mode in Visual PRO/5 noted earlier. Here is a simple Visual
Basic example of creating a file and launching UnForm:

open "work.txt" for output as #1

print #1,tab(35); "INVOICE"
... more printing ...

UnForm Version 7.0 39

close #1

if shell("uf70c.exe —i work.txt —o //server/hplaser —f rulefile”,6)=0 then
end

else
msgbox "UnForm failed to start.”

end if

UnForm Version 7.0

40

LICENSING

UnForm is licensed based on the number of concurrent jobs it can process, with counts available as 1, 3,
5, 10, 15, 20, 25, 30, 40, 50, 75, 100, and unlimited. The UnForm Design Environment checks out a
special "Designer" license, and it is available in different concurrent counts as well.

Licensing is controlled entirely by the server process, uf70d. You can install the uf70c client programs
freely anywhere on your network.

Each UnForm installation has a serial number. There is one special serial number, UF0099999, reserved
for demo mode use on any machine. All permanent licenses are assigned a unique serial number and
must be licensed to a single machine installation. Serial numbers and their associated PIN codes are
assigned by SDSI when UnForm is purchased. In order to obtain permanent or emergency temporary
activation keys, the serial number and PIN code are required.

There are up to three activation keys that must be entered for full operation of UnForm: a system key, a
job key, and a designer key. The system key enables UnForm to operate on a specific computer. The
job and designer keys determine the number of concurrent job and design tasks that may run. For demo
mode operation, just a temporary system key is required; demo mode operation automatically enables 3
jobs and 3 designers.

There are three types of system activation keys:

30-Day Demo

This license has a fixed serial number (UF0099999) and can run on any machine for 30 days. While
running under this serial number, UnForm will print "Demonstration Version" phrases on any enhanced
output, and will print a trailer page for each job. This is the first mode activated after an installation, as it
enables the retrieval of a System ID and Machine Class needed for permanent licensing later, as well as
allowing UnForm to operate in demo mode.

Permanent

This license has an assigned serial number, and requires a System ID and Machine Class to activate. A
permanent license does not expire, enabling UnForm to run perpetually on the machine where installed
and licensed. The System ID is derived from a given installation machine and attributes of a file in the
UnForm rt\lib\keys directory (Windows) or the rt\lib directory (UNIX), so it will change if the
installation is moved to a new machine, or even to a new location on the same machine. Once the
System ID changes, the permanent activation key will no longer work, and UnForm must be re-
activated.

If the original permanent installation of UnForm is no longer used, then you can request a reset of the
permanent license to enable a new System ID and Machine Class to be associated with the permanent
activation key. Contact sales@synergetic-data.com to request resets.

Emergency Temporary

UnForm Version 7.0 41

This license is assigned a serial number, like a permanent license, but it does not require a System ID or
Machine Class to activate. This allows you to re-install UnForm on a different machine than originally
licensed, and operate it for 30 days. Once a temporary license has been issued for a given serial number,
another temporary license cannot be issued for 45 days.

UNIX Licensing
To activate UnForm on UNIX, perform the following steps:

e Login as root.
e cd to the unform directory (i.e. cd /usr/lib/sdsi/uf70).
e Execute ./license.sh.

The license.sh script prompts for the following options:

UNFORM LICENSING OPTIONS

Use the following options if this machine is connected to the Internet:

1 - Permanent Activation (requires serial number and PIN code)
2 - Emergency Temporary Activation (also requires SN and PIN)
3 - 30-Day Demo Mode Activation

Use the Tollowing options for manual activation. Activation keys
can be obtained from http://unform.com/uf7lic.cgi.

4 - Display System ID and machine class (heeded for option 5)
5 - Enter Permanent Activation

6 - Enter Emergency Temporary Activation

7 - Enter 30-Day Demo Mode Activation

g - quit
Enter selection:

To obtain either a permanent or emergency temporary activation, you will need to know your serial
number and PIN code previously assigned by SDSI. These values are not necessary to obtain 30-day
demo mode activation.

If your machine has Internet access, you can perform activation easily by choosing options 1 through 3.
Options 1 and 2 will prompt you for your serial number and PIN. Each of the three options will use the
Internet to retrieve the desired activation key.

If the Internet is not available from the install machine, then you can perform activation manually by
using another machine to visit http://unform.com/uf7lic.cgi. Use option 4 to display the System ID and
Machine Class, which will be required to obtain a permanent activation key from this web site. Options
5 and 6 will prompt for a serial number, system key, jobs key, and designers key, in sequence. Option 7
will only prompt for a system key.

UnForm Version 7.0 42

http://unform.com/uf7lic.cgi

Windows Licensing

i UnForm 6 Licensing

1] 30-0ray Demo Licensze [£] Get Spstem (D [3] Activation
Serial Mumber:
Autarnatic Derno Activation Showe Sustem D
System 1D Auto Activate PIM:

Enter today's 30-day demo license key
manually, abtained from |

hittp: A funfarm, comAufBlic. coi.
F . b achine Clags: r

Demo Serial Mumber:

Syztem Key:
Demo Activation Fewy: |

Jobsz Key:

Dezigners Key:

Help Cloze

The first step after an installation is to activate demo mode. This initializes the system ID file, enabling
a permanent license to be obtained. If you get an error message after pressing the Show System 1D
button, then this installation has never been initialized, and you must activate demo mode first.

To activate demo mode:
If you are connected to the Internet, press the Automatic Demo Activation button. This will obtain a
current demo mode activation key from SDSI's website and activate the run-time engine.

If you are not connected to the Internet, go to a computer that is, and go to http://unform.com/uf7lic.cqi,
then click the link to get a 30-day trial. Note the activation key returned, and enter it exactly the same
way in the Demo Activation Key field, then click the Manual Demo Activation button.

To verify the activation, click the Show System ID button. If the System ID and Class fields get filled
in, then it worked.

To activate permanent mode:

To activate automatically over the Internet, you need to click the Show System ID button to get the
System ID and Machine Class fields. Then fill in your serial number and PIN code, and click the
Automatic Activation button. This will use your information to obtain a permanent activation key for the
system, as well as your job and designer activation keys, and activate everything.

UnForm Version 7.0 43

http://unform.com/uf7lic.cgi

To activate UnForm manually, note your System ID and Machine Class, then go to
http://unform.com/uf7lic.cgi. Enter your serial number and PIN code, then click the button to get a
permanent license. When prompted, enter the System ID and Machine Class exactly as noted on this
screen. Note the three activation keys returned, and enter them exactly as provided in the three entry
fields, then click the Manual Activation button.

To activate in emergency temporary mode:

To obtain a temporary activation over the Internet or manually, follow the steps for a permanent license,
but check the Emergency Temp Activation option. The System ID and Machine Class are not used for
temporary activations.

Activation Errors

Permanent activation keys are dependent on the system ID and machine class information generated by
an installation. Therefore, a permanent activation key will only work on the original installation for
which it was generated. If UnForm needs to be moved or re-installed, a new permanent activation key
must be generated. This is only possible if SDSI resets the permanent key for your serial number, so
you must contact SDSI, certify that the original installation is no longer in use, and request a reset.

In the meantime, you can obtain an emergency temporary activation to allow your serial number to be
used on a new installation for 30 days.

If you attempt to get a new permanent activation key and are notified that one has already been
assigned, then contact SDSI to request a reset. If this cannot be done in a timely fashion, get an
emergency temporary key instead, and then contact SDSI at a later time.

Note that temporary keys are issued at most once every 45 days. If you get an error message indicating
the temporary key availability has not expired, then you must contact SDSI to get a reset.

Designer Evaluation Period

In addition to the 30-day UnForm demonstration mode, if you license UnForm for jobs but not
designers, an additional 30-day designer demo period is enabled. This demonstration period begins the
first time a designer connects to a licensed UnForm server.

UnForm Version 7.0 44

http://unform.com/uf7lic.cgi

UNFORM COMMAND LINE OPTIONS

The uf70d server program can be started with the following options:

UNIX command lines

uf70d start

Starts the server daemon.

uf70d stop

Stops the server daemon.

uf70d restart

Stops, then starts the server daemon.

Windows command lines

uf70d.exe -configure

Displays the configuration window for the server. This option is available in the
Windows Start menu and the Server Manager.

uf70d.exe

Displays the Server Manager window.

uf70d.exe -v

Executes a local UnForm client (uf70c.exe) to show the server version.

uf70d.exe -start

Manually starts the server if it is NOT installed as a service.

uf70d.exe -stop

Manually stops the server if it is NOT installed as a service.

The uf70c client (and uf70cc.exe console client on Windows) program offers many options, which
control various aspects of how it communicates with the server and how the server is told to execute the
job. Note that if the command line becomes too long for the operating system, you can use the —z or —zx
options, which cause command line options to be read from a text file.

Standard Options

Option

Description

-300

Causes UnForm to suppress 300 dpi settings within the PCL output file. Some
PCL devices don't support the PCL unit of measure command, and instead
include it as printed output. If this option is used, any images (dump files) or
attachments must also be generated for 300 dpi and suppress any unit of
measure settings.

-C copies

Causes UnForm to issue multiple copies of the entire report. This differs from
the -pc option. If copies is set to less than 2, this option is ignored. This
option and the "-pc" option are mutually exclusive; also, rule sets can specify
copy options that will override command line options.

-ci or -color

Forces pcl image conversions to retain color rather than force black and white.
See the image command for more information about automated image
conversion and scaling. This also implicitly sets the —gw option.

-cols n

Sets the default columns per page when a job is using default scaling, as when
the —p pdf or —p laser options are used and no rule set is detected or specified.
See also the —rows option.

UnForm Version 7.0

45

—compress or -cmp
-nocompress

The —compress or —cmp options will force compression of PDF files, even if
the best compression available is RLE. If the operating system supports zlib
compression, then Flate compression is turned on by default and this option is
redundant.

If you want to disable the automatic Flate compression, use the —nocompress
option.

-e error-file

Causes UnForm to output any errors to the file specified. Error files reside on
the client system, not the server.

-emattach "value"
-embcc "value"
-emcc "value"
-emfrom "value"
-emlogin "value"
-emmsgtxt "value™
-emoh "value"
-empswd "value"
-emsubject "value"
-emto "value"

These options supply values for an automatic email command. See the email
command documentation for descriptions of each option. The —emto option is
required, all others are optional, though certainly the —emsubject and
-emmsgtxt are likely required for a given application. For emailing to work,
the job must be a PDF job, and the server's mailcall.ini file must be properly
configured with a server= line defining the SMTP server.

-f rule-file

Establishes a different rule file than the default specified during the
installation. Rule files are text files that contain descriptions of the form
enhancements for one or more forms. The enhancement options are described
in detail under Rule Files, below.

UnForm will always search for the rule file first in the UnForm server
directory, then by the full pathname given. Rule files must reside on the
server machine, not the client.

By convention, rule files have a .rul suffix, though this is not a requirement,
and the rule-file value can be any file name. The UnForm Designer tool
maintains a .rud suffix for working rule files and a .rul suffix for published
rule files.

-gb|-greenbar [options]

Adds alternating shade patterns to simulate green bar paper. If the options
parameter is supplied, it should be in the form defined by the shade command
for repeating shade values. If no option value is supplied, the default is 3 lines
shaded at 10%, 3 lines skipped, repeated until the end of the page.

-gs

Causes UnForm to generate laser driver shade regions graphically, rather than
using internal PCL shade commands. The result is finer shading detail,
especially at 600 dpi. Using this option will add between 2K and 4K per job.

The gs command can also be used in rule sets to control graphical shading at a
copy level.

UnForm Version 7.0

46

Forces UnForm to pass through PCL image width and height escape
sequences to the printer. This is generally necessary on color laser images to
avoid a black stripe from the right image edge to the right margin. However,
if you are using PCL images, then it is important that all images on a form
contain width and height values so they won't conflict with one another. Some
image generating programs don't store the width and height values.

-i input-file

Names an input text file for UnForm to process as input. If not specified, or if
it is a dash (-i -), then standard input (std input) is read. Under Windows,
standard input cannot be used, so an input file must be supplied. Note that the
input file must reside on the client's computer, not the server.

-ix input-file

Same as the —i option except the input text file is removed upon completion of
task. Note that the input file must reside on the client's computer, not the
server.

-land

Turns on landscape print mode as the default. A portrait command in a rule
set will override this option. Note that landscape printing usually requires a
reduction in the number of rows per page, as compared with portrait printing,
in order to produce usable results.

-lib “dir[;dir;...]”

Add directory (or directories delimited by semicolons) to the library of search
paths used for locating external files, such as images, attachments, or merge
rule files. Note that the library= line of uf70d.ini provides another method of
doing this, and the rule file’s path is also automatically added to this search
list.

Sets the printer model to a name that can be found in the ppd directory
(without the “.ppd” suffix, e.g. -m hp4000 will load the ppd/hp4000.ppd file).
This is useful when producing PostScript jobs that use printer features such as
duplex or tray selection, as the code for those features is defined in PPD files
provided by printer manufacturers.

If no —m is provided, then UnForm will select a default PPD file based on the
driver. Custom PPD files can be obtained from a printer vendor or from
various Internet sources, or can be written from scratch or based upon one of
the generic files.

-macros

Turns on macros.

-macrocopy n

Used in conjunction with the —makemacro option. A macro will be created for
the designated rule set copy.

-makemacro n

Causes UnForm to simply create the appropriate macro for the designated rule
set and designate it as the number n. It must be used jointly with the —r option
and can be used in conjunction with the -macrocopy option. See special
section discussing macros later in this documentation.

-nn Indicates that an error message should be issued if the input stream is empty.
The value used for the error message is in the [defaults] section of ufparam.txt,
in the entry nullmsg=message text.

-nocompress See the —compress option.

UnForm Version 7.0

47

-nohpgl

Reverts to full PCL, rather than a mixture of PCL and HP/GL output. A
number of laser printed features use HP/GL, which is a standard feature of the
PCL5 language. Some PCL interpreters, such as those that may be included in
some fax or viewing software, may not support HP/GL, so this option can be
used to force standard PCL5 coding for many options, such as box drawing
and text alignment. A few features, such as rounded corner boxes, require
HP/GL and are not supported if this option is specified.

-nointr With this flag set, the Unix/Linux client will ignore interrupt signals once the
connection to the server is established. This allows it to keep running even if
a parent process receives an interrupt signal on platforms that propogate the
signal to child tasks.

-0 output-file Specifies an output file or device. If not specified, then standard output

(stdout) is used. Under Windows, an output file must be supplied unless one
of the special drivers, win or winpvw, is used. On UNIX, the output can be a
redirect or pipe to another program, such as Ip or Ipr.

Output names that contain spaces must be quoted.

The output file or output will, by default, be generated on the server machine.
If the name is prefixed with the phrase "client:", then it is returned to the client
for local handling. Here are some examples:

Server output:
-0 "">Ip —dhplaser —oraw —s 2>/dev/null**
-0 ""/tmp/archive/12345.pdf"

Client output:
-0 client://prntsrv/laser
-0 client:c:\archive\12345.pdf

Note that on UNIX, if there is no —o specified, or if the output is simply a dash
(-0 -), then output goes to the client's standard out. A special output of
/devltty is also recognized as client-side output to the /dev/tty device, often
used for slave printing (see the —slon/-sloff options).

If the output will be handled by the server, the client will generally exit as
soon as the job has been successfully started on the server. If the output is to
be returned to the client (or the —wait option is specified), then the client will
wait for the server to finish.

UnForm Version 7.0

48

-p output-format

Specifies the output format for the job. It may be one of the following values:

laser (or pcl), which produces PCL5 or PCL5c (color) output. The default
format is PCL5, but if this option is specified, and no rule set is detected or
specified, then the output is scaled to fit the page in conjunction with the —cols
and -rows options, or the content itself. Without any —p option, and without a
rule set, the job is passed through unmodified.

pdf, which generates files viewable by Adobe Acrobat Reader or PDF
viewers. If no rule set is detected or specified, then a scaled text job is
created, based on the —cols and —rows options, or the content itself.

ps, which generates PostScript output. If no rule set is detected or specified,
then a scaled text job in PostScript format is created, based on the —cols and —
rows options, or the content itself.

zebran, which produces ZPL Il output at n dots per mm (6, 8, or 12 — default
of 12) for Zebra label printers.

For special Zebra media handling, you can append the following to zebran:

e Media tracking (Y=standard, N=non-standard label stock). Standard label
stock is non-continuous. NOTE: changing between standard and non-
standard requires recalibrating the printer.

e Set print modes (T=tear-off, R=rewind, P=peel-off, C=cultter).

The default values are YT. For continuous labels, 8 dpomm, with a cutter, you
would specify —p zebra8NC.

html, which generates Web pages from reports, based on a special set of rule
set keywords.

win, win5, winpvw, which automatically produces a PDF file and launches
the Acrobat PDF viewer on the Windows client. win will automatically print
the document, using the Windows shell "print™ option. This generally prints
the document to the default printer. The win5 option uses a command line
launch of Acrobat with a /p option, which was the technique UnForm 5 used.
This generally results in a printer selection dialog. Both win and win5 options
are dependent on the behavior of Adobe Acrobat, which can vary from version
to version (and from Windows version to version). winpvw will provide a
print preview. These options only work in Windows clients, and require both
Internet Explorer and an Adobe Acrobat Reader as an Explorer plug in. In the
case of the console client, uf70cc.exe, the file associations of the Windows
shell are used to launch the appropriate viewer.

The winpvw option has special significance when retrieving documents or
lists from an UnForm archive, via the —arcget, -arclist, or —arclistdocs options.
In this case, the preview is generated based on the type of data returned, using
the file associations of the the Windows shell for all data except PDF
documents, which are viewed using the standard UnForm client viewer. For
list formats, pipe and tab are viewed as pure text, and csv, html, and xml are
viewed using the Windows shell association.

-page lines

Specifies the number of lines per page that UnForm should read from the
input. Normally, UnForm will find form-feed characters to delimit pages.
However, if the application simply prints even numbers of lines per page, this
can be used to define that value so UnForm can properly parse the input
stream. The rule file page command is normally used rather than this
command line option, since different reports can have different page sizes.
However, this option is useful when doing cross hair prints (the -x option) to
properly parse individual pages.

-paper paper
-ps paper

Specifies the paper size used by the printer. Valid values include letter, legal,
ledger, executive, a3, and a4. The default is letter. For a complete list, see the
[paper] section of ufparam.txt.

For Zebra printers, the paper setting is generally required, and is in the format
widthxheight, where width and height are decimal numbers indicating width
and height in inches of each label. 3.25x5.5, for example, would define a label
size of 3.25 inches wide by 5.5 inches high. The default size is 4x6.

-pc copies

Causes UnForm to issue multiple copies of the report, page by page. If copies
is less than 2, this option is ignored. This option and the "-c" option are
mutually exclusive; also, rule sets can specify copy options that will override
command line options.

-pdfauthor "value"

-pdfkeywords "value"

-pdfprotect "value™
-pdfsubject "value"

These options supply default values for the author, keywords, protect, subject,
and title commands, respectively. All options are used exclusively with PDF
output.

-pdftitle "value"

-port n Specifies the port that the server is listening on, if other than the default of
2715. The —server line can also be used to specify the port, in the format
server:port. The uf70c.ini file also can contain the default port to use in the
absence of this option.

-printblanks Causes UnForm to process blank pages the same as non-blank pages.

-pb Normally, blank pages are suppressed.

-prm "parameters"

Provides the ability for the application to send parameters to UnForm on the
command line. This might be used, for instance, to pass a company number
for use in a code block. The format for parameters is "parameter-1=value-
1[;parameter-2=value-2;...]" Any number of parameters can be specified
within the limits imposed by the operating system for command line length.
Each parameter becomes a global string in Business Basic (use the GBL()
function to retrieve), and each is set to the value specified. Multiple
parameters need to be delimited by semi-colons (;). -prm
""company=01;name=Acme Paint", for example, would establish two global
strings: company and name. These could be referenced within code blocks
(prepage, precopy, etc.) as GBL("company™) and GBL("name").

-quiet

Forces the Windows version of uf70c to route any errors to the log file defined
in uf70c.ini, or “uf70c.log” by default, and to any —e file named on the
command line. Without this option, errors are reported in message boxes.

UnForm Version 7.0

50

-r rule-set

Used to specify a rule set name to use for the job. The rule set specified must
exist in the rule file used for the job (see the —f option). If this option is not
used, UnForm will attempt to automatically detect what form is being
processed based on specifications contained in the rule file. If no form is
detected, then UnForm creates a simple text job or may pass the job through to
the output unmodified. If the rule-set contains spaces, it should be quoted.
Rule set names are not case sensitive.

-rland
-rport

Turn on reverse landscape or reverse portrait orientation. These options are
only valid on laser output.

-rows n

Sets the default rows per page when a job is using default scaling, as when the
—p pdf or —p laser options are used and no rule set is detected or specified. See
also the —cols option.

-s sub-file

Specifies a text file to be used as a substitution file. Substitutions are used by
UnForm when placing text in the form output. If the text can vary from one
form to another, such as company names and addresses, then multiple
substitution files can be defined, each containing different names and
addresses, and the proper one identified with this command line option. See
the text keyword for more information. The default substitution file is called
"subst". If sub-file is not a full path, UnForm will look for it in the UnForm
directory. UnForm will automatically generate stbl(*@name") definitions for
each line in the substitution file. Code blocks and expressions can use the
stbl() function (gbl() on ProvideX) to return these values.

-Server server

Specifies the server, if the default server found in uf70c.ini is incorrect. The
server value can be a hostname or IP address of the system running the
UnForm server, and may optionally include :port suffix, such as
ourserver:2714. The port can also be specified with the —port option.

-shift n

Causes all input text to shift n columns to the right, similar to the action of the
shift command. This can be useful in conjunction with the —x crosshair option
to force text to match the alignment it would have with a shift n command in a
rule set.

UnForm Version 7.0

51

-slon "codes"

Causes local (client side) output to be started with the slon code and ended

-sloff "codes" with the sloff code. This option is only supported in the UNIX client. The

code can contain text and special escaped characters:

\e Escape

\n Newline

\r Carriage return

\Onn Octal character nn (i.e. \033 is an escape)

\xhh Hex character hh (i.e. \x1b is an escape)

These values are typically set in conjunction with a —o /dev/tty option, in

order to send a job back to the client-side terminal device for slave printing.

Use of these options also causes the UNIX client to attempt to change the stty

setting of the —o device to "raw" for the duration of the output.

A typical slave print client command line might look like this:

cat samplel.txt | uf70c —f simple.rul —slon "\e[5i" —sloff "\e[4i" —o0 /dev/tty
-status Overrides the default behavior of the status window when submitting jobs in
-nostatus the Windows client uf70c.exe. The default behavior is to show the window

for jobs that will be returned to the client, and not show the window for jobs
that will be printed by the server.

-testpr font symset

Generates a test print showing nearly all characters (ASCII 1 to 254) in the
font and symset codes identified. For a list of font codes and symbol sets, see
the ufparam.txt file, sections [fonts] and [symsets], respectively.

This option supports both laser and pdf drivers. To generate a PDF file, add "-
p pdf" to the command line. Output can be sent to a file or device with the "-
0" option, or on UNIX can be piped to standard output. Note that with the pdf
driver, the only symbol set used is 9J.

-timeout n

Sets the socket timeout, for connecting to the server, to n seconds. If the
server takes more than this amount of time to accept the connection, the client
produces an error. The default value is 10 seconds.

-V

Causes UnForm to print version information and exit.

-vshift n

Causes all input text to shift n rows down, similar to the action of the vshift
command. This can be useful in conjunction with the —x crosshair option to
force text to match the alignment it would have with a vshift n command in a
rule set.

-wait

Causes the client to wait for job completion, even if the server is printing the
job. Normally, when the client submits a job to the server, it will exit as
quickly as the server acknowledges the job has started (not, of course, if the
output needs to come back to the client). By including the —wait option, the
client will wait until the server job is complete, even if the output will be
handled by the server. The purpose of this option is to allow client reporting
of any errors the server might encounter once the job starts.

UnForm Version 7.0

52

-X [page[,page, ...]]
-x| [page[,page, ...]]

Causes the first page of input, or the pages specified, to be printed with a cross
hair pattern. This is typically done once to assist in determining placement of
text, and then removed. Sometimes, a special printer definition is set up
within an application, using the -x option, so that any form can be printed to
that printer for layout purposes. Note that setting the environment variable
UFC to "y" will cause this option to be automatically implemented.

Optionally, specify one or more (comma-delimited with no spaces, or
hyphenated for ranges) page numbers to get UnForm to produce cross hair
patterns on specific pages of the input stream. For example, '-x 1,3-5" would
produce cross hair patterns on pages 1, 3, 4, and 5, suppressing all others. If
the input doesn't contain form-feed page delimiters, be sure to use the —page
option as well.

When the —x option is used, no rule set is applied to the job. See the
crosshair command if you want to apply a grid to enhanced output.

The —xI option will produce a landscape version of the crosshair printing.

-z filename
-zx filename

Adds command line options contained in the text file filename to the
command line as if they were part of the command line itself. This option is
helpful if a command line length exceeds the operating system limit. If the —
zx option is used, then filename is erased once it has been read.

The file is simply a text file with arguments separated by white space or new
lines. Lines beginning with a # character are not included.

Job Status Viewing Options

-jobs
-myjobs

These options trigger the viewing of jobs submitted to the server. The —jobs
option shows all jobs submitted to the server, while —myjobs shows just those
jobs submitted by the current user. Job records are kept for a configurable
amount of time, determined by the age= setting in the uf70d.ini file on the
server.

By default, the data displayed includes the job number, date/time, user, input
size, pages complete, percentage complete, and status. The —detail option,
below, adds the rule set, driver, and error message columns.

In Windows, the jobs display in a grid. On UNIX, the jobs are displayed
continuously on the display terminal, and will generally need to be processed
through page filters. For example, to view a paginated display of any jobs that
ended with errors:

uf70c —jobs | grep 'Errored’| more

-detail

This option will cause the job listing to include additional data, including the
ruleset, driver, and any ending error message.

UnForm Version 7.0

53

-active

This option will limit the job display to jobs that are currently processing on
the server.

Archive and Document Management Options

-arcargs "args"

Sets the default archiving subjob options. When archives are written via
UnForm jobs (as opposed to the —arcput option), a PDF file is generated as a
subjob while the UnForm job is processed. The subjob may require UnForm
command line options to run properly. This option sets those options. The
archive command can also set options.

-arccats “cats”

Sets the archive document category indexes for document writing. There can
be any number of semi-colon delimited categories, with each category
supporting up to three pipe-delimited levels. Each level can be up to 20
characters long. A different character than the pipe can be use by specifying a
—arcsep option. Generally this option must be enclosed in quotes to protect
semi-colons, pipes, and spaces in the command line. The format structure is
this:

"catl.l|catl.2|catl.3;cat2;cat3.1|cat3.2;..."

-arcdel

Triggers removal of an archive image or document, honoring the options for
-arclib, -arcdoctype, -arcdocid, -arcsubid. Delete access to the library is
required for the —arclogin user. If a—arcsubid is supplied, then just that image
is removed. If no —arcsubid is supplied, then the document record and all sub-
images are removed.

-arcdocid "docID"

Sets the archive document ID for document writing or retrieval.

-arcdoctype "doctype

Sets the archive document type for document writing or retrieval.

-arcdtm “ymddate”

Sets the archive document date for document writing to the date specified.
Normally this value is calculated automatically. The date supplied must be in
the format yyyymmddhhmmss, with the first 8 characters required.

-arcend “end”

Specifies an ending point for —arclist and —arclistdocs options, allowing for a
range a range of documents to be returned. The ending point should logically
be associated with the order specified in the —arcorder option. If the order is
“category”, then end can contain pipe separators to indicate category level
breaks.

-arcentityid “entityid”
-arcentid “entityid”

Sets the entity ID for document writing, either the default for UnForm jobs or
the value for direct (-arcput) document writing.

-arcfilter “filter”

Specifies a filter string to apply to the —arclist and —arclistdocs options. This
filter applies to all elements of the document, including title, keywords, and
categories. If the filter starts with a tilde (~), the remaining characters are
interpreted as a regular expression. Otherwise, wildcard characters * and ? are
supported for matching any characters or any single character.

-arcget

Triggers retrieval of an archive image, honoring the options for -arclib,
-arcdoctype, -arcdocid, -arcsubid, and -0. Read access to the library is
required for the —arclogin user.

UnForm Version 7.0

54

-arckeywords “kwds”

Sets the archive document keywords for document writing. There can be any
number of semi-colon delimited list of words or phrases. If none is set, then
documents inserted by UnForm jobs (as opposed to those written via a —arcput
option) will have a configurable number of unique keywords generated
automatically from input file content. Generally this option must be enclosed
in quotes to protect semi-colons and spaces in the command line. The format
structure is this:

"kwl:kw2;..."
-arclib "libpath” Sets the archive library path for document writing or retrieval.
-arclink “links” Sets the archive document links, which is a semi-colon delimited list of links

-arclinks “links”

to web documents, either external or other archive documents. Each link in
the list can be in one of the following formats:

e A full URL, optionally matching a URL used to load a document or
image from a library, or a URL to an outside page or document. This
structure, if it begins with http:// or ftp://, can be prefixed with a title in
the format of title=URL. If the title is specified, that becomes the
visible link in the browser.

o Asimplified pipe-delimited structure of library|doctype|docid[|subid],
which is displayed in the browser interface as a URL link to the
document or image named by library, document type, document 1D,
and optionally image sub ID.

There can be any number of links in the list.

-arclist Triggers a listing of archives, honoring the options for —arclib, -arclistfmt,
-arcorder, -arcstart, -arcend, and -arcfilter. This listing displays the document
archives, but not the image sub ID’s. Use the -arclistdocs for this additional
information. The -0 option can be used to send the results to a file.

-arclistdocs Triggers a listing of archives and image sub ID’s, honoring the options for

-arclib, -arclistfmt, -arcorder, -arcstart, -arcend, and -arcfilter. This listing
displays the document archives plus their associated images. The -0 option can
be used to send the results to a file.

-arclistfmt fmt

Sets the format for -arclist and -arclistdocs. It must be one of the following:
tab, csv, pipe, html, or xml.

-arclistlibs Triggers a listing of libraries, including path, description, creation date, and
default permissions.
-arclogin Sets the login user ID and password (they must be separated by a slash - /) for

“userid/pswd” | ask

the command. Logins are required for many archive command line
operations. Under some circumstances, login information can be read from
files. See the Document Archiving and Management chapter for more details.

Optionally, enter the word “ask”, or provide no argument at all, and the client
will prompt for the login information.

UnForm Version 7.0

55

-arcnotes "notes"

Sets the archive document notes for document writing. To force line breaks,
insert \n mnemonic character sequences.

-arcorder order

Sets the order of the lists retrieved by the —arclist and —arclistdocs options.
The order must be one of the following: id, date, title, or category. The
default order is id.

-arcput

Triggers writing of a file directly to a library, bypassing UnForm processing
of the input file. The option requires values for -arclib, -arcdoctype, -
arcdocid, -arcsubid, and -i, and supports the archive property setting options
such as -arctitle, -arckeyword, etc. Review the archiving chapter for more
details.

-arcsep char

Sets the separator character for category levels to char. The default is |.

-arcstart “start”

Specifies a starting point for —arclist and —arclistdocs options, allowing for a
range a range of documents to be returned. The starting point should logically
be associated with the order specified in the —arcorder option. If the order is
“category”, then start can contain pipe separators to indicate category level
breaks.

-arcsubdtm “ymddate”

Sets the archive document image sub ID date for document writing to the date
specified. Normally this value is calculated automatically. The date supplied
must be in the format yyyymmddhhmmss, with the first 8 characters required.

-arcsubid "sub ID"

Sets the archive document image sub ID for document writing or retrieval.

-arcsubtitle "title"

Sets the archive document image sub ID title for document writing.

-arctitle "title"

Sets the archive document title for document writing.

UnForm Version 7.0

56

FLOW OF PROCESSING

UnForm processes jobs in a complex but defined manner. The following list describes in general what
occurs when a job is submitted:

The client program is executed with options, generally including input and output specifications, a rule
file, and any other command line arguments. On UNIX, it is possible for the input and/or the output to
be "standard input” and "standard output™, so that the client can process jobs in a pipe. Here are a few
examples:

uf70c —i samplel.txt —o "">Ip —dlaser —oraw"* —f acme.rul
cat samplel.txt | uf70c | Ip —.dmylaser —T pcl
cat samplel.txt | uf70c —p pdf >/home/mypdfs/xyz.pdf

uf70c —i samplel.txt —o client:myfile.pdf —p pdf

In all cases, the input file comes from the client and is sent to the server. With a —o option, the output
normally stays on the server, though if the output designation is prefixed with "client:", then it is
returned to the client. On UNIX, if "standard output™ is designated, the output is also returned to the
client. The rule file specified with the —f option resides on the server.

For performance reasons, it is normally desirable to specify a server-based output designation with the
-0 option. In that circumstance, the client only runs long enough to submit the job and ensure the
command line arguments are acceptable to the server, then returns to the application. If the client will
be receiving the output, it must wait for the job to finish and retrieve it, which can be time consuming
(though certainly less so if the client and server are on the same machine).

When the server receives the job, it stores the input in a temporary file, and calls the UnForm processor
to handle the job.

UnForm reads the input file to obtain the first page. It looks for a form-feed, or if no form-feed is found,
it reads the first 255 lines. It then strips the data of any PCL escape sequences in order to get a plain
text array of lines. Lines must be terminated with line-feed characters (ASCII 10) or carriage-return,
line-feed sequences (ASCII 13, 10).

This first page is processed against the rule file. If a —r ruleset command line argument was used, then
the rule file is scanned for the specified rule set. Otherwise, each rule set's detect statements are tested
using the first page of text. When the rule set is found, it is parsed into commands and code blocks. If
no rule set is found, then the job is handled by pass-through logic, or if a rule set was specified with —r
and not found, an error occurs and the job exits.

UnForm Version 7.0 57

If the parsed rule set indicates a page size with the page n command, any excess lines read from the first
page are returned to the input buffer. As the input stream is read for additional pages, UnForm will read
only n lines per page. Note that if a form-feed character is encountered before n lines have been read,
then the page is also considered complete.

If a prejob code block is present, it is executed.

Now processing of the job begins. Each page is processed in the following order:

The prepage code block is executed.
Any command expression values are resolved.
For each copy:

OO0OO0O0OO0O0OO0ODO0OO0OO0ODOOO0OO0OO0OO0OOo

The precopy code block is executed.

Command expressions are resolved.

Any hshift or vshift commands are executed (if shiftfirst=1 in ufparam.txt [defaults]).
Move commands are executed.

Font, bold, italic, underline, and light commands are executed.

Shade commands are executed.

Box commands are executed.

Text commands are executed.

Hline and vline commands are executed.

Erase commands are executed.

Any hshift or vshift commands are executed (if shiftfirst=0 in ufparam.txt [defaults])
Attach commands are executed.

Image commands are executed.

Barcode commands are executed.

The application text, with any font attributes applied, is added.

Micr commands are executed.

The postcopy code block is executed.

The postpage code block is executed.

When all pages have been processed, the postjob code block is executed.

As the job is processed, the output designation for each copy is checked, and if the output is
changed, predevice and postdevice code blocks are executed. When running a PDF job, the only
time the output can be changed is in the prejob code block, or with an output command that is non-
copy specific. The postdevice code block is executed after the output is complete and closed,
making it suitable for handling the output file itself (for emailing, faxing, etc.).

Once the job is complete, it is available to return to the client, if the client's command line requires it.
The client has monitored the job for completion in that case, and it then retrieves the job output. Note
that if the rule set has overridden the output designation for the job, or part of the job, then the client will
only be able to retrieve what was sent to the original output designation.

UnForm Version 7.0 58

So the following scenario will conflict:

e uf70c —i samplel.txt —o client:/tmp/invoice.pdf —f advanced.rul —r invoice

e Inthe invoice ruleset is this: output **/home/pdfs/invoice.pdf*’

e The server will send output to its /home/pdfs/invoice.pdf file, leaving the temporary output for the
client empty. The client /tmp/invoice.pdf file will be an invalid, empty file.

UnForm Version 7.0

59

CONCEPTS, PRIMER, AND TIPS

UnForm is a very powerful tool, with dozens of commands and features. It can be difficult to grasp the
basics from such a large toolset, but the basics are really very simple. Once UnForm is installed by an
administrator, the only skills required to develop typical business forms are an ability to edit text files on
your system, and an ability to execute UnForm as needed to test your changes.

Here are some basic concepts that you should understand before proceeding:

e UnForm processes text input and produces formatted output. The input can come from a file or, on
UNIX, can come from UnForm's standard input. The output can go to a file or a device on either the
server or the client, or on UNIX can go to the client's standard output.

e UnForm uses a rule file to define all the form and print jobs it might process. In that rule file are one
or more rule sets, each of which represents one form or print job. Rule files and the rule sets they
contain are simply text files with command lines, which you can edit with any text editor. The rule
file should be stored in the UnForm directory, and specified with the "-f rulefile” command line
argument. If you don't specify the rule file on the command line, then the default rule file named at
installation is used.

e Unless the "-r ruleset" command line option is used, UnForm reads the first page of input and
compares that first page with all the detect statements found in each rule set. These statements
instruct UnForm to look for text or patterns at specified locations or lines (or anywhere on the page).
If all the detect statements for a given rule set match the contents of the first page, then UnForm
selects that rule set and begins to produce output. If a match is not found, then the next rule set is
tested, and so on until all the rule sets have been tested. If no match is found, then UnForm will pass
the job through without any changes or enhancements, or in the case when a pdf or pcl driver is
specified with a —p driver command line option, will produce a text job scaled to fit each page.

e Each job has its own geometry, that is, the basic columns and rows to which UnForm scales
everything. If you specify cols 85, then UnForm will scale each character and all the enhancement
positions and sizes to 1/85™ of the printed space between the margins. In a sense, the job wraps
enhancements around the text input as it is sent to the output.

e The commands in the rule set determine what enhancements are applied. These can be text
additions, font changes, boxes, shade regions, barcodes, images, and more. Each change is
controlled by a command line in the rule set, such as box 5.5,2,20,4.

Some commands don't add output, but instead modify the text input to UnForm. The text will
normally print in the Courier font, scaled to the number of columns you specify. You can change
the attributes of that text in any rectangular region with font command, or manipulate it with the
move and erase commands.

UnForm Version 7.0 60

Some commands control the printer. For example, the tray command can select the input tray on a
laser printer, and the bin command can select an output bin.

You can have UnForm generate multiple copies of each page of input. Each copy can have unique
characteristics by using if copy n blocks. This is a simple structure that starts with a line "if copy
n", where n is the copy number, followed by any number of lines of enhancement commands,
followed by a line "end if".

Creating Rule Files with the UnForm Graphical Designer

Obtain sample output from your application for the form you want to design. Most applications
provide the means to print to a text file. If no other means exists, you can define a printer that prints
to UnForm with a —debug command line option, in which case UnForm will leave a copy of the
input stream on the server, under the UnForm directory, in temp/jobno.in. You can find job numbers
and their print times and size with the uf70c —myjobs command.

Store this text file in the UnForm directory on the server.

Start the UnForm Designer on a Windows system, and connect to the UnForm server when
prompted. Create a new rule file, then a new rule set, then set the sample to the file created above.
The UnForm Designer is a rule file editor with on line help, command editors, and drawing and
preview capabilities. More information about using it can be found in the on line help that comes
with the product.

Manual Rule Set Creation Steps

Obtain sample output from your application for the form you want to design. This output can be
printed to a text file, or you can simply use two printers defined with UnForm, one with the crosshair
option (-x), the other with normal output. If you are working on a Windows system or have network
access from a Windows system to the server where UnForm operates, you can use the pdf driver and
an Acrobat Reader to save paper while developing the design.

Print your sample through UnForm with the crosshair option turned on. This will provide you with a
grid of text positions printed by your application. If you have a file printed by your application, the
command line for a grid would look like this: uf70c —x 1-99 —i input-file —o output-device or uf70c
-x 1-99 —i input-file | Ip -dxxx . If your sample does not contain form-feeds, you can add a —page n
option to tell UnForm how many lines are to be read per page.

Since you will be printing this sample many times, you may wish to create a script or batch file to
automate the command line, which will be something like: uf70c —i input-file —f rule-file —o output-
device or uf70c —i input-file —f rule-file | Ip -dxxx.

UnForm Version 7.0 61

e Looking at the text of the input file, determine what makes this job unique. Sometimes there is a
title, such as "PURCHASE ORDER", printed at a specific position. That may be enough to
determine the uniqueness of the document so just add detect column, row, "PURCHASE ORDER".
You might need to find multiple patterns by using more than one detect statement. Patterns are
specified by starting the detect string argument with a ~ character. The balance of the string is a
regular expression. Common syntax elements for regular expressions include "." to match any
character, [0-9] to match any digit, [A-Z] to match any capital letter, and * to match any number of
repetitions of the prior match character. A more complete description of regular expressions is in
the Regular Expressions chapter.

To try out your detect statement(s), try adding just those statements plus a single text command, then
print the job. If your job prints with that text in addition to the text from your application, then your
detect statements are working. This is what the rule set will start to look like:

[purchase_order]
detect 40,2,"PURCHASE ORDER™
text 1,1,"Test Text"

Note that it is possible to execute a rule set without detect statements, by adding "-r ruleset™ to the
command line.

e The rest of the form design is simply a matter of adding commands for text, boxes, and shade
regions. It is usually best to work consistently from top to bottom, left to right in the different
sections of the form. Use comments (lines starting with #) liberally; they make the rule set easier to
follow when you come back later to make a change.

A good place to see complete rule sets are the sample rule files provided with UnForm, simple.rul and
advanced.rul. These two files are thoroughly documented in Sample Rule Sets chapter. In addition to
simple form designs, the samples show techniques with complex designs, such as jobs with multiple
formats of input, and jobs that have embedded programming capabilities.

Tips and Techniques
e Always start with a crosshair pattern, so the basic text provided by the application, and its exact
placement, can be seen. As the crosshair mode prints just the first page, use short versions of the

reports or forms. There are several ways to create a crosshair version of a report:

o Print the report to a file, then process that file with UnForm's command line, such as uf70c -i
filename -o output-device —x

0 Add a printer configured with the "-x" option, and print to that printer.

If your report doesn't contain form-feed characters at the end of the page, then you should print just

UnForm Version 7.0 62

one page worth of data, or add a —page n option to the command line. Otherwise, UnForm will
assume the page is made up of as many lines as are printed, up to 255 lines.

Use detect statements to identify each form. UnForm is designed to process all your reports and just
enhance those it can identify; all others are passed through unchanged. This is easier to set up than
forcing a given printer device to be named for every form or report, as is required of most form
packages.

Specify the columns and rows for the form or report using the cols and rows commands. If this isn't
done, then UnForm will assume 80 columns by 66 rows. An exception to this assumption is that if a
page keyword is used, then the rows will be taken to be that value unless a rows command is also
present.

Remove unwanted text with the erase command, or move it with the move command. In
programming code, such as in the prepage or precopy routines, you can modify the text$[] array
directly or via the set() function.

Apply attributes to the text with the bold, italic, light, or underline commands. These apply to the
text generated by the application (not to text you add with the text keyword). Or use the font
command, which can apply any of these attributes as well as apply other characteristics to the
application text data.

Use the font command to modify the font of text from the application, All text printed by the
application will print in Courier unless changed with the font command. When changing to a
proportional font, be sure to make the changes to specific logical regions, such as a column of prices.
If you change the font for the entire page, then columns will not align properly.

Add text, such as headings or messages, with the text command. Text can be literals enclosed in
quotes, named values from a substitution file if prefixed with "@", environment variables prefixed
by $, or an expression enclosed in { } characters. Text can be rendered at any size and in any font
supported by the printer or device. Remember that fixed pitch fonts, such as Courier, are sized in
characters per inch, while proportional fonts are sized in points. The larger the cpi, the smaller the
font. The larger the point size, the larger the font.

Add shading and box drawing with the shade and box commands. Reverse shading is accomplished
by shading a region with 100% (black) shading, and using a font or text command to modify the text
to shading of 0% gray (white). Simply using a row or column value of 1 will draw lines. To draw a

box and shade the interior, use the shade option of the box keyword.

Add logos and other images with the image command. With this command, UnForm normally
looks specifically for PCL raster images (or PDF images if the pdf driver is used) in the file.

UnForm can also be configured to use Image Magick or Image Alchemy for on-the-fly conversion of
traditional image formats to native PCL or PDF.

UnForm Version 7.0 63

Use the attach command to add overlays or attachments. This command does not search only for
image data. It does, however, search for and remove initialization and form-feed codes.

Attachments should be treated as separate copies: use the pcopies command to allocate enough
copies, then use if copy n to add the attachment, notext to suppress the application text output, and
make sure other enhancements don't apply to the attachment copy.

To create an overlay, use the attach command, but allow the text and enhancements to also be
applied on the same copy. Attachment documents for PCL output can be created using a PCL5
printer on Windows, selecting the Print to File option or setting it up to use a FILE: port. For PDF
attachments, use Adobe Distiller, choosing non-optimized, ASCII output options.

If the application doesn't use form-feeds at the end of each page, then use the page keyword to tell
UnForm how many lines are used for each page. Many applications, especially with forms, will use
just line-feeds when scrolling to the top of each form. UnForm will need to be told where the end of
a page is, in this case.

Use Business Basic programming as a powerful macro language. All the data that is sent by the
application to each page is available for your use. Use this data to get fax numbers and generate faxed
copies, or to print shipping labels derived from the invoice ship-to addresses while packing lists are
printed, or to add additional information such as costs or comments to forms, or to print logs or send
email. See the precopy{} command reference, and the Programming Code Blocks chapter for more
information.

UnForm Version 7.0 64

DOCUMENT ARCHIVING AND MANAGEMENT

OVERVIEW

The UnForm document archiving and management component provides a suite of archiving functions
which are seamlessly added to UnForm's library of commands and tools for document enhancement and
delivery.

Existing UnForm integrators and designers familiar with Unform's unique text filter technology will find
it simple, intuitive and hassle-free to add archiving commands and arguments into UnForm's rule-file
oriented flow of processing. Or rule-files can be bypassed altogether to archive non-UnForm-generated
documents using the familiar command-argument interface to the UnForm client software. And
UnForm's separate Scanning workstation component can add scanned image files to the archive and
match them with existing documents previously stored using manual 1D matching or barcode/OCR-
based image ID capture.

With a universal, browser-based document retrieval interface, UnForm makes it easy to browse, search,
list, view, administer, and secure archive libraries. Libraries can scale up to a theoretical capacity of 4-
billion documents. Context-sensitive help links include sample page images, and help guide the user or
administrator through the browse, search and administration functions. Sample archives are included
and are referenced in the help pages. They can aid in the design of a logical custom archiving library and
identification structure suited to the needs of sophisticated end-users.

Flexible pre-defined and user-defined document index structures are designed to make document
identification and retrieval practical, fast and easy. Pre-defined index structures exist for a two-segment
type-1D index, and a date-time index. A user-defined up to ten-segment pipe-delimited category key
structure is also provided for indexing. The browser-based document retrieval interface provides an
intuitively sensible drill-down browse function through the levels of the multi-segmented indexes.
Libraries are file-system-based locations. A three-tiered library-document-image hierarchy is employed
which allows multiple versions of a document, e.g. text and pdf, to be stored together, uniquely
identified by a Sub-ID index, and further allows multiple text or non-text image or data files to be
attached as sub-documents to a parent. When archiving from an UnForm job, both text and pdf versions
are stored automatically.

Subject to access-rights, document and images being listed and/or viewed in the browser interface can
have properties modified by users to update document status, correct indexes, and maintain associated
notes and keywords at a document level. Files on the network can be browsed and added as sub-
documents from within the browser.

Security is managed by library and by user. All documents are encrypted and compressed when stored in
the library. To access documents, a user login is required, and each login can be granted read, write, or
delete access to a given library, or can be allowed to access the library based on the library's default
access profile.

UnForm Version 7.0 65

The browser-based, multi-library search function creates disk-based query-lists of documents which can
be further manipulated independent of other documents in the library. The query lists can be the basis
for what are known as bulk actions, which include copying to new or existing libraries, transferring to
new or existing libraries, and exporting to HTML. The HTML export produces a completely self-
contained, browsable, pure-HTML directory structure suitable for loading on other storage media, such
as a CD/DVD, a zip file, a web site directory, etc.

Imagine, for example, exporting all of a customer's invoices from a date range to a zip archive and
emailing it to them. Another example would be to off-load old documents to external storage, then
purging them to free up disk space.

The separate Scanning workstation client provides image management and uploading into a library.
Images can be scanned or imported from the PC's file system. Both barcode recognition and OCR
recognition assist in automating document identification. Using VBScript, a developer can automate the
interpretation of such data and use database access or other coding logic to generate document property
and indexing information.

STRUCTURE DETAILS

The structure of UnForm archiving is a hierarchical one, where an image of a document is at the bottom
of a nested structure. In fact, what you may consider a “document”, such as an invoice or a purchase
order, is at the middle of this structure, as there can be many versions of a given document. Here is a
description of this structure:

Library A library is a folder or directory path to the
location where archived documents are stored.

There can be one or many libraries to store
documents. Access and security is controlled by
library, so the process of designing a single or
multiple library structure, and determining which
documents will be stored in which library, needs to
take into account the access rights of groups and
users.

Beneath a library path UnForm uses a file storage
algorithm with a theoretical capacity for over 4
billion distinct documents, each of which can
contain multiple images. All data about
documents and images, as well as the images
themselves, is encrypted and compressed.

Document A document is one or more related files which
share a unique Document Type and Document ID
combination, different from any other document in

UnForm Version 7.0 66

the archive.

Because the document's "source" data itself is
stored in what UnForm recognizes as an "image"
file, the document unit in UnForm can be seen as
an "envelope” or "wrapper" which surrounds one
or more associated files.

Image

An image is a single document file with a distinct
ID (called a sub ID) which distinguishes it from
other files associated with the same document. An
image can be any type of file, not limited to image
files. For example, when UnForm adds an archive
from an UnForm print job, it adds both text and
PDF images, with ID values if @text and
@unform.

Think of a "text image™ of an invoice, versus a
"PDF image" of the same invoice, versus a signed
delivery slip "image file" pertaining to the invoice,
versus a Word document "image" of the order
quotation preceding the invoice, all associated
with the same document ID.

Each image within a document is identified with a
unique sub ID.

DOCUMENT-LEVEL IDENTIFICATION

The table below briefly describes the EIGHT main data elements which UnForm uses to identify
documents at the document level. With the exception of the date/time stamp, and some character-
separator rules enforced by UnForm on some of the fields, the data format for each of these text
elements is user-configurable. A significant part of the administrator's implementation process is to
design a document identification structure for the archive which will meet the enterprise's needs over a
meaningful period of time.

Document
Type

e First segment of the primary document identifier-key.
e Maximum 20 characters
e Null value allowed

Example document types from our sample libraries:

UnForm Version 7.0 67

demo_sales demo_accounting demo_purchasing

"ArStatement" "ApAging" "PurchaseOrder"
"Oplnvoice" "ApCheck"

"OrderPickQuote "ArAging"

" "GLDailyDetail"

"OpSalesRegister

Document
ID

e Second segment of the primary document identifier-key.

e Maximum 20 characters

e Null value NOT allowed. However, the null is trapped by UnForm and replaced
with a 10-digit unique serial sequence number. Note that the number sequence is
global within a library, but not within a document type.

The combination of Document Type and Document ID form a unique identifier-key to a
document within a library.

Note that libraries are distinct units to each other so document identifier-keys are only
unique to a library, in other words, identical document identifier-keys can exist in two
distinct libraries without over-writing.

Categories

Secondary sorting values known in some software applications as sort-keys.
Example Categories from the demo_sales library include:

Oplnvoice and OrderPickQuote ArStatement
Doc Types Doc Type
"Customer” | {CustName} "Customer” | {CustName}

"Salesperson” | {SIspName}
"CustPO" | {CustName} | {POnumber}
"Orderld” | {CustName} | {Orderld}

In the above samples, the text between quotes is literal, and the text between curly
braces { } indicates a variable data field where the values for the document being
archived are supplied by the application.

The pipe symbol | is used to delineate segments in a category, which allows UnForm to
structure a drill-down presentation when browsing for documents. A category can

UnForm Version 7.0 68

contain up to ten pipe-delimited segments. The first segment should normally be a literal
text category name, as shown in the example, to facilitate the category-type browse
method when looking up documents.

Note from the first column header above that the "Oplnvoice" and "OrderPickQuote™
document types are configured with the same list of categories. This is because in our
sample database they are related documents in a relationship where an "invoice" is
always preceded by an "order".

As an example from our samples of some of the considerations in choosing document
identification strategies, by structuring a category on the invoice to reference the source
order ID number, the following sample document browse list was enabled where an
invoice and its related order document appear together in a list.

Categories Type Doc ID | Date and Time
Orderld | Everestindustries | 0001134 [Oplrvoice 0O05132 (040652005 [14"
11:10:44
Orderld | Everestindustries | 0001134 | OrderPickCuote (0001 134 |0406/2006 Pl
11:10:54 Ev

The next example shows a browse list which has been started using a category browse
method and drilling down from customer to customer name "Taylor". Notice the three
different types of documents which were located for Taylor, because the different
document types were configured with at least one identical category.

Select Library = Browse By = Customer = TaylorSportingizoods = Select Docur

Categories Type Doc ID Date and Time

Custamer | TaylorSportingGoods | ArStaternent |000300_040430 (04/06,2006 STATE
11:10:33 Taylor!

Custarmer | TaylorsportingGoods| Oplhvoice ao05133 04,06.2006 N0
11:10:45 Taylor!

Custamer | TaylarsporttingGoods | OrderPickQuote 0001136 04,06/2008 PICKIN
11:10:55 Taylors

Foto page of 1

Apply this filter:

If a given category segment will potentially contain many thousands of items, it may be
desirable to divide the segment into two tiers. For example, if a customer name is used
as a segment, and there are thousands of customers, a two-tiered customer name could
be designed, such as left(custname$,2) + “|” + custname$. During browsing, the user

UnForm Version 7.0 69

would first locate the customer alphabetical group based on the first two characters of
the name, then access just that sub-group of customers.

Document
Title

A broad general description of the document, sometimes composed of several major
data values that help distinguish the document from other similar documents.

Keywords

Additional document identifiers that can help narrow and limit searches to locate
documents and groups of documents, improving search efficiency. Keywords are semi-
colon delimited words or phrases. Often they are auto-generated from the content of the
job submitted for UnForm processing. When keywords are auto-generated, the
generation is subject to configuration rules found in the [achive] section if the uf70d.ini
file.

Links

A list of links to other documents, either in the archive system or external to it. This list
is displayed in the web browser interface when viewing the document. The list is semi-
colon delimited, with each link being one of these formats:
e A URL, such as http://acme.com, or a complete link to an UnForm browser
page. If it starts with http or ftp, it can be prefixed with title= to specify a
title for the browser to display.
e A pipe-delimited structure that identifies the library, document type,
document 1D, and optionally image sub ID. The strucure is
library|type|docid|subid, with the |subid portion being optional.

Entity ID

A security data element which can be included with a document and/or user account to
filter access to specific documents or groups of documents to login user accounts which
carry access authorization referencing the same entity ID.

The concept of the Entity ID is one of ownership, designed for situations where external
web access to documents in a shared library needs to be restricted to the entity specified.
For example, where customer XYZ can login and browse, list and view invoices for
customer XY Z without ever seeing documents for other entities listed.

If documents are written to the archive with an empty entity ID field, then any user
account with an empty entity 1D will pass the entity test for access to a record. In an
environment with empty entity ID field on documents in the archive, simply assigning a
user any non-blank entity ID value can be used to restrict access to all documents in the
archive.

At the current release level the entity ID field is treated, both for document properties
and user properties, as a simple string of text. There are NOT provisions in the software
for assigning multiple entity ID's to either a user or a document, nor any provision for
entity 1D sub-string referencing.

UnForm Version 7.0 70

Date / The date/time stamp of a document is used as a secondary sort-key in the library to
Time allow a by-date browse-method drill-down to locate documents.

Notes Free-form text notes can be stored with a document and can be edited in the document
properties box of a located document.

IMAGE-LEVEL IDENTIFICATION

The elements discussed above apply to a document at a document "envelope™ level, and serve to
identify, group, and sort documents, and store additional useful information about a document, including
free-form notes.

Because there can be multiple "images" associated with a document, each separate image file is assigned
a unique identifier-key known as a Sub-1D. Note that the term “image” is used loosely here, and simply
refers to a different version of the document. There can be a text image, a PDF image, and/or a tiff
image of the same document.

When text-based documents are stored in the archive by an UnForm ruleset command, UnForm will
default the Sub-1D value to @text for the text version of a document, and @unform for the pdf version
of a document.

Documents stored in the archive via UnForm's command-line syntax will NOT have a default sub-1D
assigned, so the user or the application must create a Sub-I1D using the —arcsubid command line option.

In addition to the document file and the sub ID, UnForm also stores the date and time a particular image
was last updated, plus a description field called a sub-title.

ADDING UNFORM-GENERATED DOCUMENTS

UnForm document archiving supports several methods for adding documents to libraries. One of the
most useful methods is via UnForm jobs themselves, through the use of command line arguments or an
archive command in a rule set. The benefit of this is that as jobs print and are formatted by UnForm,
they can be automatically archived, eliminating the need to scan and archive reports using an external
system.

Note: in order to be archived properly, jobs must be designed to successfully produce PDF output. In
particular, jobs that use a pcl attachment or pcl images, but do not provide for PDF versions of these,
will not be formatted properly in the archive.

UnForm Version 7.0 71

If any —arcxxx command line arguments pertaining to the archive command are used, such as —arclib or
-arcdoctype, the options establish defaults for any archive command found, or initiate job archiving as if
an archive command were included in the rule set.

For example, assume the uf70c command line includes these options:
-arclib “/archives/reports” —arcdoctype “Reports”

If a rule set contains an archive command, the above defaults will be overridden by the command’s
options. However, if a rule set does not contain an archive command, or if no rule set is selected, the
job will be archived regardless, using the above library and document type (in this case using an auto-
generated document ID). This capability makes it easy to set up default archiving, with the ability to
control archives on selected jobs with the addition of an archive command.

When UnForm archives a job, it evaluates all the elements of the archive command (or the values from
the command line) page by page. Whenever an element changes, a new document is generated. In
some cases, such as with hard coded command line options, these elements don’t change during the job,
and the whole job is archived as a single document. In other cases, an element such as a document 1D
might change as pages are processed, and a job can result in several documents being added to the
archive.

UnForm documents can contain multiple versions or images, each identified with a sub ID. When
UnForm archives one of its jobs, it archives two versions of the document. The first format is a PDF
version of the document, which by default is given a sub ID of “@unform”. The second format is a text
version, derived from the incoming text stream. This is given a sub ID of “@text”.

Archives generated from UnForm jobs receive automatic title and keywords if these values are not
otherwise specified. If no title is specified and no title command is used, then the default title is derived
from the content of the incoming text. Keyword generation is controlled with several parameters in the
uf70d.ini file, including a maximum keyword count (keywords=n), a list of patterns to not archive
(nonwords=file), and a list of characters to eliminate (nonchars=list).

If no document type is provided, then if a rule set is used for a job, its name is used as the document
type.

The following command line arguments enable archiving and provide defaults for archive commands.

-arclib "libpath™

-arcdoctype "doctype"

-arcdocid "docid"

-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title"

-arccats "catl.1|catl.2|catl.3;cat2;cat3.1|cat3.2;..."
-arckeywords "kw1;kwz2;..."

-arcnotes "notes (\n?)"

UnForm Version 7.0 72

-arcargs "uf70c args for subjob"

-arcsep char (separator for category segments - default is |)
-arcdtm yyyymmddhhmmss

-arcsubdtm yyyymmddhhmmss

USING THE WEB BROWSER INTERFACE

The web browser interface is used to browse, search, and view archives and associated images. The
setup of the browser interface is simple; all that is required is that a web server, such as Apache or
Microsoft IS, be operating on a system that has access to the UnForm server, ideally on the same
machine. A CGI script, uf70a.pl or uf70a.exe, is placed in an appropriate scriptable location, or given
an appropriate scriptable name, and users simply need to point their web browser to the address, such as
http://mycompany.com/cgi-bin/uf70a.pl.

The user is presented a login form first. The first time it is used, an administrator can login with the
name “admin” and password “admin”, and can then add additional users and change the admin
password using the browser.

The Browse feature provides drill down capabilities through the library, document type, document ID
structure, and optionally by date or category indexes.

The Search feature provides cross-library searching for generic text patterns (Simple form interface) or
by specific field attributes or ranges (Advanced form interface). Selected archives can be viewed,
exported, transferred, or copied.

Administrative features, such as user login management and library security set up, are available when
an administrative user logs in.

A session cookie is used by the web browser interface. If cookies are not enabled in the web browser,
then the browser interface will not function correctly. The lifetime of a session is controlled by the
sesage=hours value in the [archive] section of uf70d.ini. If setto 0, a login is required each time the
user starts their web browser. If set to some other value, then sessions last the specified number of
hours before a new login is required.

See the Web Script Installation chapter for more details about installing and configuring the CGI

script. The interface itself provides on-line help for a more detailed description of how to use the
browser interface.

DIRECT BROWSER ACCESS TO DOCUMENTS

It is possible to view documents and document images directly, bypassing the full user interface, by
using one of the following URL structures:

UnForm Version 7.0 73

http://mycompany.com/cgi-bin/uf70a.pl

http://server/path/script?a=vw&Ib=library&doctype=doctype&docid=docid
http://server/path/script?a=vw&Ib=library&doctype=doctype&docid=docid&subid=subid

The first form will load a document-level view page, which includes links to images. The second will
load an image directly. In each case, the server and script path must point to the UnForm web interface
script, and the library, document type, document ID, and sub ID values must be URL-encoded (i.e.
spaces are replaced with “+” characters, and certain other characters are converted to %hex.
Information about URL-encoding can be found in any HTML guide.

If the browser interface session has expired, then a login screen will be presented before the document is
shown. It may be preferable to configure sessions to last longer, several hours or a day or more, to
avoid this requirement.

Alternatively, it is also possible to use one of the UnForm clients, in conjunction with the —p winpvw
option, to retrieve and view a document image from an archive. This may be preferable as login
information can be supplied from the command line or saved information from prior executions.

CUSTOMIZING THE WEB INTERFACE

The browser interface can be customized to support preferred colors and layout, and even to translate to
different languages. The basic web interface is stored in a directory called web/en-us in the UnForm
server directory. Within this directory are many .html files that act as templates, a messages.txt file that
contains text messages and other items, and two style sheet files, default.css and custom.css. One
primary html template, master.html provides the overall layout of the web interface.

The files in web/en-us are all subject to overwriting when UnForm is updated, so to provide a custom
interface, you should copy any files you want to customize into a different directory under the web/*
structure. Once this is done, you can modify the webdirs= line in the [archive] section of uf70d.ini.
This line contains a list of directories that the user login screen lists as “Language” choices. There can
be many directories, or just one. Whichever is selected by the user, that directory becomes the first
location searched for web files, with the en-us directory searched after for any files not found. As the
en-us directory is also searched, there is no need to copy all files to the custom directory — just those you
want to modify.

Note that the first webdirs entry can contain a different login.html template, and this becomes the form
shown when users first login.

An example of a simple customization is to change the title and logo displayed in the web browser
interface. This is found in the master.html template, in these lines:

<div id="mainheader'">

UnForm Version 7.0 74

<img src=""[SCRIPT_NAME]?fl=sdsi-logo.gif" alt="your
logo here™ />

UnForm Archive Viewing
</div>

To change the logo, place your logo image anywhere in the UnForm server directory structure (main
directory, the web directory, the web/en-us directory, or your custom directory. Then modify the
fl=filename to reference your image file. You can also change the title to your chosen title.

While it is possible to modify the cosmetic appearance of the browser interface, it is not possible to
modify the underlying structure or navigation, so be sure that if you modify templates all bracketed tags
and links are maintained.

Note that if the publisher makes changes to the master en-us structures, any custom templates will have
to be updated to reflect any new options, tags, or other critical elements related to processing.

Caution: Any modifications performed to the templates should only be performed by experienced and
knowledgable HTML and CSS programmers. SDSI cannot warrant the performance of customized
templates.

USING THE UNFORM CLIENT

The UnForm clients, which include the Perl-based Unix client (uf70c), the graphical Windows client
(uf70c.exe), and the Windows console client (uf70cc.exe), can all perform document management
functions via command line options. In many cases, a login is required. This can be supplied via the
-arclogin option in the form “userid/password”. In addition, the clients can prompt for login
information by supplying the special syntax —arclogin ask, and/or this information can be stored.

If login information is not supplied:

e The Unix client will look in the files SHOME/.ufarc or /etc/.ufarc for two lines, login=userid and
pswd=password. These are stored in clear text, so the only effective security for this is to use
user-specific .ufarc files (in SHOME) and make sure they are readable only by the user.

e The Windows graphical client will prompt in a window for login information, and can optionally
save this information so that it will not continue to prompt. To reset this information, use the
-arclogin ask option to force a new login window. The stored, encrypted information can be
removed from the uf70c.ini file in the local Windows directory to force a new login.

e The Windows console client will prompt at the console and store the information so that future

executions will not continue to prompt. The stored, encrypted information can be removed from
the uf70cc.ini file in the local Windows directory to force a new login.

UnForm Version 7.0 75

Triggering Archiving of UnForm Jobs

In addition to using archive commands in rule sets, you can use command line options to establish
default values and to trigger archiving even in cases there rule sets do not contain archive commands, or
if no rule set is invoked and jobs are passed through to output.

At a minimum, you should specify a library, using the —arclib option. Other options that set archive
properties can be used, but care needs to be taken as these are generic options that will apply to all
documents that are not archived via specific archive commands.

-arclib "libpath”

-arcdoctype "doctype™

-arcdocid "docid" (if not supplied, an auto-generated number is created)
-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title™

-arccats "catl.1|catl.2|catl.3;cat2;cat3.1|cat3.2;..."

-arckeywords "kw1;kw2;..."

-arcnotes "notes™ (use \n character sequence to embed line breaks)
-arcentityid “entityid”

-arcargs "uf70c args for subjob™

-arcsep char (separator for category segments - default is |)

-arcdtm yyyymmddhhmmss (normally automatically calculated)
-arcsubdtm yyyymmddhhmmss (normally automatically calculated)

The keywords setting can be a semi-colon delimited list, or a number indicating how many keywords to
generate from content (-1 or "all" for all). The default number of keywords is found in uf70d.ini. When
keywords are scanned, there is a file (ufnonwrd.txt by default) that contains words and patterns to
ignore.

Use \; or \| (or \<sep char>) to embed delimiters in keywords or categories. Use \\ to embed a backslash.

Note ; and | characters (and spaces) must be protected from the shell, so keywords and categories in
particular should be quoted, as well as any argument with spaces in it.

-arcsubid "subid*" will sequence the key to prevent overwrites. Using "subid*" will force "subid*".

Adding External Documents

To add external documents to a library, bypassing any UnForm processing of the input, use the —arcput
command line option, in conjuction with the —i option to name the file to add. Note this differs from
archiving of UnForm jobs, as the input file is not processed through a rule set, but rather written directly
into the archive. In addition, further options may (and probably should) be used:

-arclib "libpath™
-arcdoctype "doctype™
-arcdocid "docid" (if not supplied, an auto-generated number is created)

UnForm Version 7.0 76

-arcsubid "subdoc ID"

-arcsubtitle "subdoc title"

-arctitle "title"

-arccats "catl.1|catl.2|catl.3;cat2;cat3.1|cat3.2;..."

-arckeywords "kw1;kw2;..."

-arcnotes "notes™ (use \n character sequence to embed line breaks)
-arcentityid “entityid”

-arcargs "uf70c args for subjob™

-arcsep char (separator for category segments - default is |)
-arcdtm yyyymmddhhmmss (normally automatically calculated)
-arcsubdtm yyyymmddhhmmss (normally automatically calculated)
-arclogin "userid/pswd" | ask

The keywords setting can be a semi-colon delimited list, or a number indicating how many keywords to
generate from content (-1 or "all" for all). The default number of keywords is found in uf70d.ini. When
keywords are scanned, there is a file (ufnonwrd.txt by default) that contains words and patterns to
ignore.

Use \; or \| (or \<sep char>) to embed delimiters in keywords or categories. Use \\ to embed a backslash.

Note ; and | characters (and spaces) must be protected from the shell, so keywords and categories in
particular should be quoted, as well as any argument with spaces in it.

-arcsubid "subid*" will sequence the key to prevent overwrites. Using "subid*" will force "subid*".

Write access to a library is required to add a document to it.

Document Retrieval

The command line can be used to extract a document image from a library. To do so, you must supply
the —argget command line option, along with identifying options to indicate the library, document type,
document ID, and image sub ID. The —o option is used to specify where the document should be placed,
typically with a “client:” prefix, like —o client:/tmp/myfile.pdf.

-arcget

-0 filename

-arclib "libpath™

-arcdoctype "doctype"
-arcdocid "docid"

-arcsubid "subdoc ID"
-arclogin "userid/pswd" | ask

Read access to the library is required.

When used in conjunction with the —p winpvw driver, a local view of the document is presented on the
workstation running the UnForm client.

UnForm Version 7.0 77

Document Deletion

The command line can be used to delete a document image from a library. To do so, you must supply
the —arcdel command line option, along with identifying options to indicate the library, document type,
document 1D, and optionally an image sub ID.

-arcdel

-arclib "libpath™

-arcdoctype "doctype"
-arcdocid "docid"

-arcsubid "subdoc ID"
-arclogin "userid/pswd" | ask

If subid is supplied, just that subid is deleted. If no subid is supplied, the full document record is
deleted, including category indexes and all subid images.

Delete access to the library is required.

Document Listings

To list libraries, use the —arclistlibs command line option:

-arclistlibs
-arclistfmt tab|csv|pipe
-0 “output file”

To list documents in a library, use the following options:

-arclist

-arclib “libname”

-arclistfmt tab|csv|pipe|html|xml

-arcorder id|date|title|category

-arcstart "starting point in order specified"

-arcend "ending point in order specified”

-arcfilter "filter string™

-arcsep char (used to parse start/end values for category segments)
-arclogin "userid/pswd" | ask

You must have read access to a library to list documents in it.

The columns listed include document type, document 1D, date, time, title, the document storage file
path, and entity ID. If you specify the category order, then the category’s segments are added as a single
column. Otherwise, no category information is shown. If the list format is html or xml, then notes,
keywords, links, and categories are added to the list.

UnForm Version 7.0 78

The start and end range values relate to the order. For example, if the order is “id”, then the start and
end ranges refer to document type and ID sequences. For segmented ranges, such as for type and ID
values, or category segments when listing in category order, separate them with the —arcsep value (a
pipe (|) by default). For example:

-arcorder id —arcstart “Invoices|000152”

Be sure to quote the range if it contains characters, such as pipe or spaces, that are significant to the
operating system. For date ranges, enter dates in the structure yyyymmddhhmmss (as many characters
are significant to your request). For example, -arcstart 200612011800 —arcend 200612020800 for the
range from 6:00 PM on December 1, 2006 through 8:00AM on December 2, 2006.

To filter documents returned in the list, use the —arcfilter option. The filter can be a simple word or
phrase, a simple wildcard containing * and/or ? characters such as “Acme*”, or a regular expression
prefixed with a tilde, such as “~[0-9][0-9]\.[0-9][0-9]”. Filters are applied to a concatenation of the
document type, document ID, date, time, and title values, and in the case of category order, the
categories are filtered as well. If the list format is html or xml, then the notes, keywords, and categories
are added to the list. Keywords and categories, though not category segments, are delimited with spaces
rather than semicolons when filtered.

To list documents and their associated image information, use the -arclistdocs command line option
rather than the -arclist option. The same options as shown above for —arclist apply.

When used in conjunction with the —p winpvw driver, a local view of the listing is presented on the
workstation running the UnForm client.

Importing Documents from sdStor

UnForm 7 can import images from an sdStor library. It performs this by extracting the text documents
from the library and running them as UnForm jobs. The import is performed for a single library,
specified using the —arcimport option, which also allows specification of the sdStor login and password:

-arcimport “sdstor_libname;login/pswd”

The default UnForm library will match the path used for the sdStor library. To override this default,
add: -arclib “libname”.

A few additional command line options are added automatically in order to:
e Retain the original date and time of the sdStor document
e Retain the title and keywords from sdStor

e Add an additional keyword *“sdstor sdStorID”
e Add a category “sdstor|stStorID”

UnForm Version 7.0 79

The keyword and category additions are provided to help link documents in sdStor with documents
added via the import to an UnForm library.

For enhanced processing, specify a rule file using the —f rulefile option, and use archive commands in
the rule file to provide the document settings desired. When using a rule file, be sure to not specify a
date and time, so the command line options that capture the date and time from sdStor will not be
overridden.

The import is processed by extracting all the documents from the sdStor library and placing them in the
rpg directory (the direct TCP/IP printing queue), where they are automatically processed sequentially.
As each document is added to the queue, a log line is printed to the command line’s output, so it is
recommended that a —o option be used to send log output to a server file (don’t use the client: prefix on
the output file), as imports can be time consuming. The amount of time spent extracting to the queue,
and the amount of time it takes for the queue to be processed, depends on the number and size of
documents in the sdStor library.

UNFORM SCANNING WORKSTATION

An optional companion product to UnForm archiving is the Scanning Workstation client. This program
can be installed on any Windows workstation on the network where the UnForm server is running. This
tool is designed to obtain images from the Windows file system or any scanner available to the
Windows system where it is installed. Those images can be identified automatically or manually, then
uploaded to an archive library.

Typically such images are linked by document type, document ID, and a unique sub ID to other images
in a library. For example, a signed delivery document could be identified by the customer and order
number, and be stored as an image version of the order.

The Scanning Workstation supports OCR and barcode recognition, and VBScript-based job definitions,
to help automate the process of image identification and management when dealing with known formats.
This is particularly useful when scanning images generated internally by UnForm.

The Scanning Workstation includes a comprehensive help file that contains more information.

FUNCTIONS RELATED TO ARCHIVING

When processing a job, UnForm can not only add documents to an archive, but it can also extract
documents from a library for use in processing. For example, a statement job could be designed to
extract a list of invoice PDF images and attach them to the statement using the images command.
To retrieve a document during an unform job, use this function in a code block:

getarc(library$,doctype$,docid$,subid$,filename$[,errmsg$])

UnForm Version 7.0 80

If filename$="", it will return a temporary file containing the document. This temporary file will be
erased at the end of the job. If a filename is supplied, that file will be created and will not be erased at
the end of the job.

If errmsg$ is present, it will return any error if the document can't be found or if another unexpected
error occurs.

To convert a PDF file into an image, using Ghostscript, use this function:
pdftoimage(fromfile$,tofile$,format$ [,resolution [,errmsg$]])

This function will invoke Ghostscript, either on the UnForm server or on the UnForm Support Server, to

convert the PDF file in fromfile$ to an image file in tofile$. The format of the output will is named in

format$, and it must match one of the [driver] names found in uf70d.ini. The image is created at the dpi

specified in resolution, or 300 dpi if not.

If tofile$ is null, it will be returned with a temporary file name that will be erased when the job is
complete.

Any error message is returned in errmsg$.
Ghostscript must be configured in the [drivers] section of the uf70d.ini file, or an UnForm Support
Server with Ghostscript configured must be available. Note that the images command automatically
performs this step function if it encounters a PDF file name.
To test if a library exists, use the libexists() function:
libexists(lib$) returns O if library lib$ doesn't exist, or 1 if it does.
To obtain a list of image subids associated with a document, use the getsubids() function:
getsubids(lib$,doctype$,docid$[,dIm$])
Returns a list of document sub IDs, such as the @text and @unform subids automatically generated by
the archive command. The list is returned as a delimited string, with the default delimiter being a
semicolon. If the delimiter occurs in any subid, it is escaped with a\. The returned value may be used
by the parse functions.
When a series of document images should be attached to a page produced by an UnForm job, you can
extract the desired documents to work files, using the getarc() function, and append them to the page,

optionally tiled, using the images command.

To determine if a document or sub document exists, use these functions, which return 0 if the specified
entity does not exists, or 1 if it does:

docidexists(lib$,doctype$,docid$)

UnForm Version 7.0 81

subidexists(lib$,doctype$,docid$,subid$)

BUILDING DEMO ARCHIVE DATA

The UnForm server includes a Unix shell script called arcdemo.sh in the samples sub-directory. The
shell script can be executed to initialize and build demo archive data based on the arcdemo.rul samples.
Windows installations can produce the same list by choosing the Configure button and clicking the

Other tab in the Server Manager.

UnForm Version 7.0

82

WINDOWS SUPPORT SERVER

The Windows Support Server is a no-charge companion product that can be installed on any Windows
2000 or higher computer on the network where the UnForm server runs. If the UnForm server is
running on Windows, then the Support Server is already installed and can be enabled through server
configuration. If the UnForm server is not running on Windows, you can install the Support Server
separately and configure these lines in the [defaults] section of uf70d.ini:

sshost=hostname or IP address of Support Server
ssport=listening port number

In addition, the sshost() code block command can be used to set the support server machine and port
during job processing.

The following features are supported:

Image scaling and conversion

The UnForm server can utilize a local copy of Image Magick or Image Alchemy to perform
image scaling and conversion, but these products are not always readily available for some Unix
operating systems. In addition, the image command supports two options, gamma n and rotate
n, which the Support Server honors. This feature is used automatically by UnForm whenever an
image conversion or scale is required, if Magick or Alchemy is not configured for use at the
server.

GhostScript-based Image Output

The UnForm server can utilize a local copy of Ghostscript to produce image output and to
convert PDF files to other formats. However, the latest versions of Ghostscript are not readily
available on all operating systems. By installing a Windows version of Ghostscript on the
support server, the UnForm server can rely on it to perform the conversions. This feature is used
automatically by UnForm whenever a PDF-to-image conversion required, if GhostScript is not
configured for use at the server.

Database Access

The support server can be configured to access data base sources via ODBC or more recent
database access technologies. UnForm rule files can connect to these data sources and retrieve
data for use in UnForm jobs.

Data sources are configured using the Support Server configuration window. UnForm jobs can
then use the dbconnect() and dbexecute() code block commands.

Microsoft Fax

The Microsoft fax server, a free product available for Windows 2000 and up (and pre-installed
on Windows XP and up), can be easily set up on the support server or another Windows server
on the network. The support server can then use the Microsoft fax client to send faxes on behalf

UnForm Version 7.0 83

of UnForm jobs.

UnForm jobs can use the msfax() code block command as soon as Microsoft Faxing is

configured.

Configuration note: in order to fax PDF documents using the Support Server, you must install
and configure Ghostscript on that server. The Support Server can then convert PDF files to tif

for faxing. The reason for this is that Acrobat doesn’t support the Windows shell’s “printto”
action, which Microsoft Fax uses to convert documents to faxable tif format.

The following table describes the various code block functions that are supported when the Support

Server is available.

sshost(SERVER$,PORT)

Sets the support server hostname and port. Default values are
defined in the uf70d.ini file in the sshost and ssport settings.
This command allows for dynamic changing to a different
server.

dbconnect(NAMES$, TIMEOUT,
EMSG$)

Connects to the database source identified by name$. The
support server configuration is used to define the names and
associate them with data source connection strings. Typically
done in a prejob code block.

dbexecute(NAME$, CMDS$,
TIMEOUT, FDELIM$, RDELIM$,
RESPONSE$, EMSGS)

Executes the sql command cmd$ and returns zero or more
result rows in response$. Columns are delimited by fdelim$
(tab - chr(9) - by default). Rows are delimited by rdelim$
(CR-LF - chr(13)+chr(10) - by default).

msfax(FILENAMES$, FAXNUMS$,
TAGS$, EMSGS$)

Faxes filename$, normally an UnForm-generated PDF file, to
the fax number specified in faxnum$. Numerous supported
tags can be specified in tags$, in the format
tagl=value;tag2=value,...

The format of faxnum$ can be a simple phone number, or
multiple numbers separated by semicolons, or tags in the
format:

namel=fax1; name2=fax2, ...

Quote the entire tag if it contains semicolons: "Smith; Cline;
Robert=9,1-555-555-5555". This will involve use of quote
characters in the expression, using chr(34) or 223. For
example:

Faxnum$=chr(34) + name$ + “=" + faxno$+chr(34)

Note that fax numbers may need to be complete, using for
example "9,1" as a prefix for an outside line, a pause, and a

UnForm Version 7.0

84

leading 1 before the area code, depending on fax server use of

dialing rules.

Tags supported are:

Cover Standard coversheet name based on the fax
server, such as cover=generic.

Localcover Personal or fax client-side cover sheet.

personalcover

Subject Subject for cover sheet.

Note or Notes

Notes for cover sheet. Use \n for hard line
breaks.

Time

A human-readable date and time to send
the fax, if not immediately.

Receipt

An email address to send fax result
reporting to. Note that you must be using a
Server version of Microsoft Fax and enable
SMTP receipt delivery for this to work.

Alert

This tag’s presence requests that the fax
client issue a message box regarding the
fax disposition.

Server

Set the Microsoft Fax Server computer
name, if the server is not running on the
same system as the unform support server.

Other sender tag names that may be used by a cover page:

name
title

company

department

title

homephone
officephone

faxnumber

email

streetaddress

city
state
zipcode
country

UnForm Version 7.0

85

RULE FILES

Rule files are text files that contain descriptions of form enhancements. There can be any number of
these enhancements, called rule sets, in a rule file. A header line composed of a unique name enclosed
in square brackets indicates a new rule set. For example, an invoice form rule set would begin with the
line [Invoice], followed by lines indicating enhancements to the invoice output sent by the application.
Without a rule set to work with, UnForm will not perform any enhancements. UnForm determines
which rule set to work with based on either a command line option (-r), or detect commands contained
in the rule set.

The enhancements that follow the [form-name] line are made up of commands and (usually) a list of
parameters separated by commas. The available enhancements are described on the following pages.

Unless otherwise noted, all column and row specifications are 1-based (i.e. the first column is 1, rather
than 0).

Commands that have parameters accept either a space or an equal sign between the keyword and the
first parameter; page 66 and page=66 are equivalent.

If a command and its parameters require a large amount of text, it is possible to split a command across
multiple lines by adding a backslash character at the end of a line to indicate the command continues on
the next line. You can have as many continuation lines as necessary. UnForm removes leading spaces
and tabs from continuation lines, so you can use indention to improve readability, as long as you
remember to place any required spaces before the backslash on the initial line. For example:

text 1,30,"This line of text is continued \
on this line.",12,cgtimes

Note that the UnForm Design Tool puts continuation lines back together, so this feature is useful only
when using a text editor for rule file development.

The driver differences and support for different keywords is noted. Note, however, that when a

command indicates all drivers, this doesn't necessarily indicate support by html. For the HTML driver,
please refer to the HTML chapter.

UnForm Version 7.0 86

CONTENT-BASED RULE SETS

In addition to rule files, it is also possible to include a rule set in the content of a job, by beginning the
job with a name in square brackets, like [ruleset]. If UnForm sees this line structure as the first line of a
job, it then reads the input stream until it encounters a form-feed (ASCII 12, hex 0C), and then doesn't
process the rule file at all. Instead, it uses the rule set provided for the job. The first character after the
form-feed is treated as the start of the document, so take care that you don't have an extra line-feed that
would throw off line numbers.

Using this technique, it is possible for applications such as report generators to enhance output
programmatically.

UnForm Version 7.0 87

ACROSS

Syntax
across n [,gap]
Description

This instructs UnForm to allocate virtual pages across the physical page, evenly spaced within the left
and right margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the down command.

Across can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a
result, copy-specific across is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

If the optional gap value is specified, it indicates the number of horizontal pixels between each virtual
page. If it is not specified, the default is to use one column (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf

UnForm Version 7.0 88

ANNOTATE, CANNOTATE

Syntax

1. annotate col|[{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr},”"msg | url"|{expr},
[text|link|stamp] [,name name|{expr}] [title title|{expr}] [,width width] [,color colorname] [,rgb rrggbb]
[,opacity opacity] [,style style]

2. annotate "text|!=text|~regexp|!~regexp[@Ieft,top,right.bottom]"”, col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr},"msg | url”|[{expr}, [text|link|stamp] [,name “name”[{expr}] [title
title|{expr}] [,width width] [,color colorname] [,rgb rrggbb] [,opacity opacity] [,style style]

Description

This PDF-only command adds an annotation element at the specified position and size. Three types are
supported: text, link, and stamp. The default is text.

If cannotate is used, then cols and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no affected regions, or several.
column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format '@left,top,right,bottom’. To use a literal "@" character in
text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Text annotations display as an icon, which if clicked will open a text window displaying the message
with the optional title in the title bar. The border can be controlled by the style, color, and width
options. The icon can be set with the case-sensitive name option: Comment, Help, Insert, Key,
NewParagraph, Note, or Paragraph. The default icon is Note. To ensure the case is maintained, the
name should be enclosed in quotes.

Link annotations perform an action when clicked. The action is defined in the message. It can be a
URL, such as http://abc.com or mailto:sales@abc.com, or it can be a Javascript action, entered as
javascript:script code. Note the javascript command can be used to add functions at a document level
which can be used in annotation actions.

Stamp annotations place a stamp rather than an icon on the form. When clicked, the message is

displayed as in a text annotation. The stamp image shown is identified by the case-sensitive name
value, which can be one of these:

UnForm Version 7.0 89

Approved
Experimental
NotApproved
Asls

Expired

Confidential
Final

Sold
Departmental
ForComment
TopSecret
Draft

Style and Width values apply to the annotation border. The style can be S (solid), D (dashed), B
(beveled), I (inset), or U (underline). Width is expressed in pixels at the current dpi.

Examples

NotForPublicRelease

ForPublicRelease

annotate 70.5,64,10,2.25,”http://acme.com/docs/terms.htm” link,style U, title “Click to view our Terms

and Conditions”

annotate “TOTAL:”,0,1,15,1.5,”Please contact our credit department at 555-123-4567 for more
information”, title “Credit Terms?”,name “Help”

Drivers: pdf

UnForm Version 7.0

90

http://acme.com/docs/terms.htm

ARCHIVE

Syntax

archive “libpath”|{expr},”doctype”|{expr} ,”docid”|{expr} [,subid subid|{expr}] [title title|{expr}]
[,notes notes|{expr}] [,keywords kws|{expr}] [,categories|cats cats|{expr}] [,link|links links]
[,entityid|entid entity ID|{expr}] [,args args|{expr}] [,dtm|date yyyymmddhhmmss|{expr}] [,subtitle
subtitle|{expr}] [,subdtm|subdate yyyymmddhhmmss|{expr}]

Description

This command causes UnForm to add two versions of the current document to the library specified. The
first document is a PDF version formatted as the current rule set specifies, the second is the input stream
text from which the PDF document was generated. The PDF version has a default sub ID of

“@unform”, but this can be overridden by specifying a subid. The sub ID of the text version is “@text”.

Note that as the formatted document is generated as a PDF, the rule set must be designed to successfully
produce PDF output. In particular, any images or attachments need to be available in PDF format, or be
designed to use automatic image conversion.

The elements of the archive command are evaluated as each page of the job is printed. If they change,
then a sub-job is executed using the pages to that point as input. In this manner, a batch job with
multiple documents can be archived as multiple documents rather than as a single large document. For
example, if an invoice run is processed, and the docid is derived from the invoice number, then each
new invoice number during the job will produce a new document in the archive.

An archive document is identified in a library by the document type doctype and document ID docid. A
document can also contain further information: title, notes, keywords, date and time, and categories.
Further, each document can contain multiple versions identified by a subid, each of which contains a
title and date and time. See the Archiving and Document Management chapter more information
about each of the archive elements.

If any archive command elements are not supplied, the following defaults are used:

e The document type is set to the rule set name

e The document ID is set to a 10-digit sequential number

e Thetitle is set to the value of the title command, if any, or is derived from text input
e Keywords are derived from unique words in the content

e The date and time is set to the current date and time

e Command line arguments, such as —arclib or —arcdoctype, supply remaining defaults

If the subid ends with an asterisk, such as “Formatted*”, then UnForm will not overwrite duplicate sub

ID values. Instead, a 5-digit sequence will be added to ensure up to 99,999 versions of a document can
be added.

UnForm Version 7.0 91

If the keywords value begins with “*;”, the * is replaced with auto-derived keywords based on content,
S0 you can have both auto and custom keywords using this structure.

Categories should be structured with vertical bars separating segments and semi-colons separating
categories. For example: “CustPO|”+custname$+”|”+custpo$ + *;” + “Salesperson|”+slspid$. There
can be any number of categories, and each category can contain up to ten segments.

Links provide outbound linking to other documents, within or without the archive system. This value is
a semi-colon delimited list of links, each of which can be in one of the following formats:

e A full URL, optionally matching a URL used to load a document or image from a library, or a
URL to an outside page or document. This structure, if it begins with http:// or ftp://, can be
prefixed with a title in the format of title=URL. If the title is specified, that becomes the visible
link in the browser.

e A simplified pipe-delimited structure of library|doctype|docid[|subid], which is displayed in the
browser interface as a URL link to the document or image named by library, document type,
document ID, and optionally image sub ID.

There can be any number of links in the list.

An entity ID can be set to tie this document to a particular code that can be used to filter access in the
browser interface. A user login can be assigned to an entity ID, and that user can only view documents
with a matching entity ID.

The args option can be used to specify UnForm command line arguments to pass to the sub-job used to
generate the archive PDF file. For example, if you only want to archive copy 1 of a job, you could pass
“-ce 1” (copies enabled 1).

Examples
archive "demo_accounting"”,"ApAging"

This first example simply archives the A/P aging report to the demo_accounting library, under the
document type “ApAging”. The document ID will be automatically generated as a 10-digit sequential
number, and the entire job is archived as a single document. The title and keywords are derived
automatically from the content.

archive "demo_sales","ArStatement",{arcid$},title {arctitle$},cats {arccats$}, args “-ce 1”

This example archives statements to the demo_sales library. The document ID, title, and categories are
expressions derived from code block variables. The sub-job that generates the PDF document will have
a “-ce 1” command line argument, which enables copy 1 only, so the archived copy will only be of the
rule set’s first copy. The sample rule file arcdemo.rul contains the full Statement rule set where this
example comes from.

UnForm Version 7.0 92

Drivers: laser, pdf, ps

UnForm Version 7.0

93

ATTACH

Syntax
attach "filename" | {expr}
Description

This will add the specified file to the output. The file will be added before any other text or data for a
given copy is sent to the printer, so this can work as an overlay file, or it can be placed in the output
instead of any text or other output, appearing like a stand-alone attachment.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

When used as an attachment, assign a copy to the attachment, and use the notext keyword to suppress
printing of text, like this:

if copy 1

the standard format

duplexing? add duplex 1 in this copy
text ..

box ..

etc..
end i1f

1T copy 2

the attachment

attach "/usr/unform/attach/attachl.pcl™
notext
end 1f

When processing the file, UnForm will remove any printer initialization codes and page ejects from the
file.

The easiest way to create an attachment file is to use a Windows workstation and install a PCL5 type
printer, such as the HP LaserJet Il or higher. Set the port for the printer to FILE:. Then create the
attachment using any word processor and print to that printer. Windows will ask for a file name, and
when printing is complete, the resulting file is suitable for use as an attachment. If your document
contains fonts that are not present in the printer you will be using, be sure to modify the print driver to
print True Type Fonts as graphics, if possible. Also, it is sometimes necessary to use a PCL5 type
driver, rather than a PCL6 driver.

To create an attachment file for the pdf driver, use Adobe Distiller, part of the Adobe Acrobat product.
When using Distiller, be sure to set the job options to turn OFF the "Optimize PDF" flag, and ON the

UnForm Version 7.0 94

ASCII flag. UnForm's PDF parser relies on a standard (old) PDF file format, which the optimization
does not produce. Optionally, use a 24-bit jpg file in an image command, scaled to the full page.

For Postscript, attach a jpg or eps file. The file will be scaled to a full page.

Drivers: laser, pdf, ps

UnForm Version 7.0 95

AUTHOR

Syntax

author "authorstring" | {expression}

Description

If this command is present, then PDF document creation adds an author authorstring, or the result of
expression, to the document content. This value is available in the General Properties Display dialog in

the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 7.0 96

BARCODE (PCL,PDF)

Syntax

1. barcode col|[{numexpr}, row|[{numexpr},"value"|{expr},symbology,height,spc-pixels

2. barcode "text|~regexpr|!=text|!~regexpr[@Ieft,top,right.bottom]"”, col|{numexpr}, row|{numexpr}, ",
symbology, height, spc-pixels, getoffset cols, getcols cols, eraseoffset cols, erasecols cols

Description

col and row determine the upper left corner of the barcode. If used, numexpr is a Business Basic
expression that generates a numeric value for the column or row.

value is a text string, up to 28 characters, to barcode. Often this is symbology-dependent. If check
digits are required, they are generated internally in UnForm. Within barcode families, if a unique
symbology is associated with a specific length, then UnForm will internally select the correct
symbology. For example, if a 9-digit zip code is specified with symbology 900 (5-digit post net), then
symbology 905 will be used automatically.

expr is a Business Basic expression that generates the text to barcode.

symbology is one of the following numbers:

Code Description

100 UPC VERSION A

105 UPC VERSION A + 2 DIGIT SUPPLEMENTAL ADD-ON
110 UPC VERSION A + 5 DIGIT SUPPLEMENTAL ADD-ON
125 UPC VERSION E

126 UPC VERSION E supporting number series 1, 6-digit input
130 UPC VERSION E + 2 DIGIT SUPPLEMENTAL ADD-ON
135 UPC VERSION E + 5 DIGIT SUPPLEMENTAL ADD-ON
150 UPC/EAN/IAN - 13

155 UPC/EAN/IAN -8

200 INTERLEAVED 2 OF 5 - 2:1 CHECK DIGIT

205 INTERLEAVED 2 OF 5 -2:1 NO CHECK DIGIT

220 INTERLEAVED 2 OF 5-3:1 CHECK DIGIT

225 INTERLEAVED 2 OF 5-3:1 NO CHECK DIGIT

300 STANDARD CODE 2 OF 5—2:1 CHECK DIGIT

305 STANDARD CODE 2 OF 5—2:1 NO CHECK DIGIT

320 STANDARD CODE 2 OF 5-3:1 CHECK DIGIT

325 STANDARD CODE 2 OF 5-3:1 NO CHECK DIGIT

400 CODE 39 (30F 9) — 2:1 NO CHECK DIGIT

405 CODE 39 (30F 9) — 2:1 CHECK DIGIT

UnForm Version 7.0 97

410 CODE 39 (30F 9) — 2:1 NO CHECK DIGIT (FULL 128 ASCII)
415 CODE 39 (30F 9) — 2:1 CHECK DIGIT (FULL 128 ASCII)
440 CODE 39 (30F 9) — 3:1 NO CHECK DIGIT

445 CODE 39 (30F 9) — 3:1 CHECK DIGIT

450 CODE 39 (30F 9) — 3:1 NO CHECK DIGIT (FULL 128 ASCII)
455 CODE 39 (30F 9) — 3:1 CHECK DIGIT (FULL 128 ASCII)
500 CODE 93

600 CODE 128 - SERIES "A"

605 CODE 128 — SERIES "B"

610 CODE 128 - SERIES "C"

700 CODABAR - NO CHECK DIGIT

705 CODABAR - CHECK DIGIT

900 USPS Post net — 5 DIGIT

905 USPS Post net — 9 DIGIT

910 USPS Post net ABC — 11 DIGIT

height is expressed in points or pixels. If it is an integer, such as 50 or 175, then it is treated as pixels at
300 dpi. Ifitis a floating-point number, like 18.7 or 12.0 (it contains a decimal point), then it is treated
as points (1 point=1/72 inch). The maximum height is 3000 pixels.

spc-pixels is the number of pixels allocated to spacing between bars, from 1 to 50, the default being 2.

In syntax 2, triggered by a quoted value as the first argument, barcodes will be generated at all locations
on a page where the text or the regular expression regexpr occurs. The value(s) to barcode will be based
upon what text matches occur. Each match will determine the value to barcode based on the word found
(up to the first space or the end of the line), and the placement of the barcode. The value to barcode can
be adjusted by the getoffset cols (integer columns from the location of the match) and getcols cols
(number of columns to use for the value). The location of the barcode can be adjusted by the col and
row parameter, where 0,0 is the location where the match is found. The match text found can be erased
from the report by setting eraseoffset cols and erasecols cols.

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The search for text or regexpr can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

Version 5 Note: The positioning algorithm for PDF versions of the barcode was modified in Version 5
to match the positioning of laser barcodes. If your application depends on this older algorithm, then you
can modify your ufparam.txt file (preferably by copying it to ufparam.txc and then modifying that file,
to avoid losing your changes during an update) to add (or change) 'v4pdfbcd=1" in the [defaults] section.

Drivers: laser, pdf, ps

UnForm Version 7.0 98

Examples:

barcode 10.5,22,{get(10,21,5)},900,12.0,2 will add a 12.0 point high, 5-digit post net barcode based on
a zip code found at column 10, row 21.

barcode ""bcd:@16,22,20,55™,0,0,"**,600,75,2, getoffset 4, getcols 10, erasecols 14 will search for

data starting with "bcd:" in the region starting at column 16, row 22, through column 20, row 55,
barcode the 10 characters following it, and erase the underlying text.

UnForm Version 7.0 99

BARCODE (ZEBRA)

Syntax

barcode col[{numexpr}, row|{numexpr}, ("value" | {expr}), symbology, height, spc-pixels, text
[above|yes|no], rotate [90|180|270], ratio rvalue, checkdigit, start startc, stop stopc, ucc, mode m,
security s, cols ¢, rows r

Description

col and row define the upper left corner of the barcode. If used, numexpr is a Business Basic expression
that generates a numeric value for the column or row.

value is a literal value to barcode, expr is a Business Basic expression that generates the text to barcode.

symbology is one of:

Symbology Code Name

Code 11

Interleaved 2 of 5

Code 39

EAN-8

UPC-E

Code 93

Code 128

EAN-13

Industrial 2 of 5

Standard 2 of 5

ANSI Codabar

LOGMARS

MSI

Plessey

UPC/EAN extensions

UPC-A

Postnet

Code 49

PDF417

CODEABLOCK

O N> INIC|0| T |IZ(r X< mMO|>|© e wN e

UPS Maxicode

For Maxicode, you may specify a mode of 2 for UPS US addresses, 3 for UPS non-US addresses, or 4
for non-UPS coding (the default is 2). The data must consist of 2 segments:

UnForm Version 7.0 100

Segment 1.
e Mode 2: 3-digit class of svc, 3-digit country code, 9-digit zip code
e Mode 3: 3-digit class of svc, 3-digit country code, 6-character zip code

Zebra requires this segment; the remaining segment format is specified by UPS.

Segment 2:
e Data content as required by UPS, starting with the "[)>"+$1E$ header.

For modes other than 2 or 3, segment 2 can contain variable content.

height is either an integer, interpreted as the number of pixels, or a decimal number, such as 20.0 or
40.6, interpreted as points (1/72 inch).

spc-pixels is the narrow bar width in pixels, from one to 10, defaulting to 2.
Following spc-pixels, the options can be in any order.
Rotate will rotate the barcode the given number of degrees.

Ratio will modify the wide bar to narrow bar ratio, from 2.0 to 3.0 in 0.1 increments. The default ratio
is 2.0. Some symbologies have fixed ratios.

text or text yes will print the human readable value below the barcode. text above (or just above) will
print this value above the barcode.

text no will not print the value, even if that is the default for the given symbology.
checkdigit will cause a checkdigit to be calculated and printed by the printer.
start char will set the start character, if used by the symbology.

stop char will set the stop character.

ucc will set the UCC Case Mode on code 128 barcodes.

mode m will set the mode code, which is symbology dependent. The UCC Case Mode may be set for
code 128 with 'mode U'. The code 49 mode can be A for auto, or 0-5 as defined in the ZPL
programmers' guide.

security n well set the security and/or error correction level for the PDF417 bar code. n can be a digit
from 0 to 8.

cols c, rows r will set the cols and rows values for the PDF417 barcode. If not set, this barcode will
assume a 1:2 row to column aspect ratio. c can range from 1 to 30, r from 3 to 90, and the product of ¢ x
r can't exceed 927.

UnForm Version 7.0 101

Drivers: zebra only

UnForm Version 7.0 102

BIN

Syntax

bin bin-code

Description

The bin keyword is used to specify the output bin for any copy. Larger, departmental laser printers
often have two or more bins, allowing print job output to be separated. In UnForm, you can specify a
bin for each copy, or for the whole job.

bin-code is printer-specific, with 1 generally being the top, face-down bin, and 2 being a side or rear
face-up bin. Some models may offer additional bins; see your printer's documentation for additional bin

codes.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify
*QutputBin bin-code entries which are used if present.

Drivers: laser, ps

UnForm Version 7.0 103

BOJ, BOP, EQOJ, EOP

Syntax

{boj | bop | eoj | eop}"text string" | {expr}

Description

These keywords provide the ability to add escape codes to the beginning of the job (after the printer is
initialized but before any data prints), before each page of each copy, after each page of each copy, and
after the job ends, just before the printer is re-initialized.

The escape sequences can be entered as a quoted text string or an expression in braces.

When entering a text string, it is possible to include non-printable characters with angle bracket
notation, such as "<27>&k10G", where "<27>" is used to include an escape character.

UnForm will normally provide all the control needed for a job. These keywords are included to handle
unusual requirements, such as perhaps adding PJL coding to a job for special paper handling
requirements.

An expression can take advantage of the getppd() function to load control sequences for PCL or
PostScript out of the printer’s PPD file (as specified by the —m command line argument or as the generic

pcl.ppd or ps.ppd).

Prior releases supported an unquoted format for hex strings. UnForm no longer supports this
syntax. If your rule file contains hex strings, convert the commands like these examples:

boj 1b266¢3247 change to boj { ath(“1b266c3247”) }

boj 1b 26 6¢ 32 47 change to boj { ath(stp(“1b 26 6¢c 32 47”,3,” “)) }
Examples:
This example shows adding PJL codes to a job, setting the title to "Title Of Job".

boj "<27>%-12345X@PJL<10>@PJL JOB NAME=<34>Title Of Job<34><10>@PJL ENTER
LANGUAGE=PCL<10>"

Drivers: laser, ps only

UnForm Version 7.0 104

BOLD, ITALIC, LIGHT, UNDERLINE
CBOLD, CITALIC, CLIGHT, CUNDERLINE

Syntax
1. bold|italic|lightjunderline col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. bold|italic|lightjunderline "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|[{numexpr},
row|{numexpr}, cols|{numexpr}, rows|{numexpr}

If cbold, citalic, clight, or cunderline is used, then columns and rows are interpreted to be the opposite
corner of the region, and columns and rows are calculated by UnForm.

Description

The region indicated by the col, row, cols, and rows parameters will have the indicated attribute (bold,
italic, light, or underline) applied. All text in the input within that region, but not text generated by
text keywords, will be affected. If used, numexpr is a Business Basic expression that generates a
numeric value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no affected regions, or several.
column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format '@left,top,right,bottom’. To use a literal "@" character in
text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Note that the font command is a more powerful alternative to these commands, and it also offers support
for fonts that support specific weights or styles other than these.

Examples:

bold 1,5,30,4 bolds a region from column 1, row 5, for 30 columns and 4 lines.

underline "TOTAL:",0,0,36,1 underlines a region beginning at a position where the text "TOTAL:" is
found, extending for 36 columns. If "TOTAL:" isn't found, the keyword is ignored until the next page is

analyzed.

Drivers: laser, pdf, ps. underline and light is supported on laser only. Not all pcl fonts support the
light and bold options.

UnForm Version 7.0 105

BOX, CBOX

Syntax

1. box col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]
[,rgb rrggbb] [,dbl|double [gap]] [,left I] [,right r] [,top t] [,bottom b] [,icols=gridcols] [,irows=gridrows]
[,ccols=gridcols] [,crows=gridrows] [,Icolor=color] [,Icolor rgb=rrggbb] [,scolor=color] [,scolor
rgb=rrggbb]

2. box "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [,dbl|double [gap]] [,left I]
[,right r] [,top t] [,bottom b] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols] [,crows=gridrows]
[,Icolor=color] [,Icolor rgb=rrggbb] [,scolor=color] [,scolor rgb=rrggbb]

If cbox is used, then columns and rows are interpreted to be the opposite corner of the box, and columns
and rows are calculated by UnForm.

Description

A box of the indicated dimensions will be drawn. All dimensions can be specified to 2 decimal places,
in the range of -255 to +255. Whole number col and row represent center points; lines are drawn to the
center point of the character position identified in order to facilitate connections between lines. This
differs from the shade keyword, which shades full character cells. It may be easier to use the box
keyword's shade parameter than to calculate shade positions that are offset from similar box parameters.
To draw lines rather than boxes, simply set the cols or rows to 1. If both cols and rows are 1, then a
vertical line is drawn 1 character high. To draw a box that is 1 column wide or 1 row deep, use 1.01 or
.99. If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and
row are 0-based in these formats and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format '@Ieft,top,right,bottom’. To use a literal
"@" character in text or regexpr, it is necessary to specify "\@"".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or

NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

UnForm Version 7.0 106

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 dot. UnForm always uses dots at 1/300
inch. If a shade parameter is desired, then the thickness parameter is required.

The left, right, top, and bottom options override the specified thickness for any given side of the box.
Setting "left 0", for example, would erase the left side of the box, while "right 4" would set the right side
to 4 pixels wide.

The double or dbl option indicates a double-lined box. Both the inner and outer lines will be drawn at
the normal thickness, and the optional gap may be specified to set the pixels between each line. The
default gap is 1 pixel. The gap must be a digit between 1 and 9.

Shading

The optional shade parameter may be used to specify a "percent gray" value from 1 to 100. Most laser
printers can only print about 8 different shades of gray, so a value of 45, for example, may print the
same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any
shade at all: a shade level of 0 will force a white interior, even if another box or shade command draws
shading inside the bounds of the box. If an interior color is specified, shading is ignored. A shade value
of -1 is equivalent to no shading at all.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue", "green™, "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"Icolor" or "Icolor rgb" for lines, and "'scolor™ or "scolor rgb" for shade.

Grids

The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.
gridcols specifies one or more vertical column settings in the structure of
column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other
than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the
top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that
thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade
region is drawn from the left edge or prior column. gridrows is identical in structure to gridcols, but
specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate
columns and rows relative to the upper-left corner of the outer box. The "ccols" and "crows"
introducers indicate absolute columns and rows. In each case, any column or row specification outside
the bounds of the box is ignored.

For partial shading, partial color shading, or multiple color shading, see the shade keyword. You can

improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher
dpi settings, by using the gs command.

UnForm Version 7.0 107

Examples:

box 5.5,2.5,34,3,2,10 will draw a box 34 columns wide and 3 lines high, at column 5.5, line 2.5. The
box border will be 2 dots wide (1/150 inch). It will be filled with 10% gray shading.

box 1,1,55,1 will draw a horizontal line, 55 columns wide, at column 1, line 1.

box ""Customer Total™,-1,-1,60,3 will draw a box around the text "Customer Total", beginning 1
column before and 1 row up, for 60 columns and 3 rows.

cbox 12 {start_row-.5},40,{end_row+.5} will draw a box with the top and bottom lines based on two
numeric variables, which would have been previously calculated in a prepage or precopy code block. In
using the cbox version, the second pair of numbers indicates the lower-right corner, rather than the
number of columns and number of rows. The code block used to calculate these positions might look
something like this code, which finds the first and last rows that contain any data in the row range of 22
through 55:

prepage{

start_row=0,end_row=0

for line=22 to 55
if trim(text$[line])>"" then if start_row=0 then start_row=line
if trim(text$[line])>"" then end_row=line

next line

¥

cbox .5,22,80.5,66,3, ccols=10.5 30 55.5 67.5, crows=23.25:1:20 60 will draw a box from column 0.5,
row 22 through column 80.5, row 66. The lines of this outer box will be 3 pixels wide. Inside this box
will be vertical lines at columns 10.5, 30, 55.5, and 67.5. Also inside the box will be a 1 pixel high
horizontal line at row 23.25, with 20% shading from row 22 to row 23.25, and another 1 pixel horizontal
line at row 60.

Drivers: All (gridcols and gridrows options supported only in laser, ps, pdf), zebra only support 0% or
100% shading.

UnForm Version 7.0 108

BOXR, CBOXR

Syntax

1. boxr col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]
[,rgb rrggbb] [,tI=topleft] [,tr=topright], [,bl=bottomleft], [,br=bottomright] [,icols=gridcols]
[,irows=gridrows] [,ccols=gridcols] [,crows=gridrows] [,Icolor=color] [,Icolor rgb=rrggbb]
[,scolor=color] [,scolor rgb=rrggbb]

2. boxr "text|!=text|~regexp|!~regexp[@left,top,right.bottom]"”, col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color] [,rgb rrggbb] [tI=topleft] [,tr=topright],
[,bl=bottomleft], [,br=bottomright] [,icols=gridcols] [,irows=gridrows] [,ccols=gridcols]
[,crows=gridrows] [,Icolor=color] [,Icolor rgb=rrggbb] [,scolor=color] [,scolor rgh=rrggbb]

If cboxr is used, then columns and rows are interpreted to be the opposite corner of the box, and
columns and rows are calculated by UnForm.

Description

A box with rounded corners of the indicated dimensions will be drawn. All dimensions can be specified
to 2 decimal places, in the range of -255 to +255. Whole number col and row represent center points;
lines are drawn to the center point of the character position identified in order to facilitate connections
between lines. If used, numexpr is a Business Basic expression that generates a numeric value for the
column, row, columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no boxes drawn, or several. column and
row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format '@Ieft,top,right,bottom’. To use a literal
"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at
1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Corner Rounding

To specify the degree of rounding for different sides, specify values for tl, tr, bl, and br, as desired. The
specification for each corner is col:row:scale, where col is the number of columns from the corner to

UnForm Version 7.0 109

begin the rounding, row is the number of rows from the corner to begin rounding, and scale is the level
of rounding, from —100 for fully convex, to 100 for fully concave, where 0 becomes a straight line from
the column and row break points. If no rounding options are specified at all, then UnForm will apply
default rounding to all four corners. If any rounding is specified, then any unspecified corners become
square corners.

Shading

The optional shade parameter may be used to specify a "percent gray" value of from 1 to 100. Most
laser printers can only print about 8 different shades of gray, so a value of 45, for example, may print the
same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any
shade at all: a shade level of 0 will force a white interior, even if another box or shade command draws
shading inside the bounds of the box.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue", "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"lIcolor” or "Icolor rgh™ for lines, and "scolor" or "scolor rgh™ for shade.

Grids

The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.
gridcols specifies one or more vertical column settings in the structure of
column[:thickness[:shade[:color|rrggbb]]]. Multiple columns can be delimited by any character other
than digits, the decimal point (.), and the colon. Each column designates a vertical line to draw from the
top to bottom edges of the outer box. If a thickness is specified, then the line is drawn using that
thickness (0 would draw no line at all). The default thickness is 1. If shade is specified, then a shade
region is draw from the left edge or prior column. gridrows is identical in structure to gridcols, but
specifies the horizontal rows rather than vertical columns. The "icols" and "irows" introducers indicate
columns and rows relative to the upper left corner of the outer box. The "ccols" and "crows" introducers
indicate absolute columns and rows. In each case, any column or row specification outside the bounds
of the box is ignored.

For partial shading, partial color shading, or multiple colors shading, see the shade keyword. You can

improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher
dpi settings, by using the gs command.

UnForm Version 7.0 110

Examples:

boxr 10,9.5,70,4.25,2,5,Icolor=blue will draw a box with default rounding on all corners, with a 2 pixel
edge and 5% shading. The edge line will be drawn in blue if the output device supports color.

cboxr 0.5,60,80.5,66,1,0,b1=3:1.5:75,br=3:1.5:75 will draw a box with corners 0.5,60 and 80.5,66, with
a 1 pixel border, no shading, and just the bottom left and right corners rounded. The rounding will start
3 columns and 1 row from the corners, and be rounded outward.

Drivers: laser, pdf, ps (laser cannot have —nohpgl specified)

UnForm Version 7.0 111

CIRCLE

Syntax

1. circle coll{numexpr}, row|{numexpr},radius|{numexpr} [,thickness] [,shade] [,color|lcolor
colorname] [,scolor colorname] [,color|lcolor rgb rrggbb] [,scolor rgb rrggbb]

2. circle "text|!=text|~regexp|!~regexp[@]eft,top,right.bottom]", col|{numexpr},
row|{numexpr},radius|{numexpr} [,thickness] [,shade] [,color|lcolor colorname] [,scolor colorname]
[,color]|lcolor rgb rrggbb] [,scolor rgb rrggbb]

Description

A circle with the center at the column and row specified, with the radius specified, will be drawn. All
dimensions can be specified to 2 decimal places, in the range of -255 to +255. If used, numexpr is a
Business Basic expression that generates a numeric value for the column, row, and radius. The radius is
specified as a number of columns. For a fixed measure radius, use an expression with the inchtocols()
or cmtocols() function.

If syntax 2 is used, then the circle is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no circles drawn, or several. column and
row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format '@Ieft,top,right,bottom’. To use a literal
"@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at
1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Shading

The optional shade parameter may be used to specify a "percent gray" value of from 1 to 100. Most
laser printers can only print about 8 different shades of gray, so a value of 45, for example, may print the
same pattern as 50.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue”, "green™, “red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"lIcolor” or "lcolor rgh™ for lines, and "scolor" or "scolor rgh™ for shade.

UnForm Version 7.0 112

Examples

The following will draw a circle centered in an 80 by 66 form, with a 2.5 inch radius, a blue 2-pixel
wide border, and a 5 percent interior shade.

circle 40.5,33,{inchtocols(2.5)},2,5,lcolor blue

Drivers: laser, pdf, ps (laser cannot have —nohpgl specified)

UnForm Version 7.0 113

COLS

Syntax

colsn

Description

This keyword specifies the number of columns to use for the form or report. The base font is scaled to
accommodate this many columns. If present, this value will override any calculation based on the cpi
keyword.

The number of columns n can be any value up to 255.

Examples:

cols 80 will set the print pitch to accommodate 80 columns per page.

Drivers: all

UnForm Version 7.0 114

COMPRESS, NOCOMPRESS

Syntax

compress
NOCoOMpress

Description

If zlib support is available on the UnForm server (most operating systems support it), then UnForm will
use the “deflate” compression method by default. This produces very compact PDF files. If you do not
wish to produce such compressed files (for example, you want to see the PDF commands contained in
the file), then you can use the nocompress option (or the —nocompress command line option) to turn off
this default compression mode.

If no zlib support is available, the compress command can be used to use the RLE compression
algorithm. This is most effective when repeated characters like spaces are present in the output, such as
wide reports with empty space between columns. Compression requires extra processing and will
therefore affect performance.

Compression can also be turned on with the —compress command line option.

You can determine if zlib support is enabled by viewing the version information produced by the uf70c
—v command line.

Drivers: pdf only

UnForm Version 7.0 115

CONST, GLOBAL, LOCAL

Syntax
const|global|local ID=value
Description

The const keyword provides the capability to use a named value as a parameter to other keywords. If,
for example, you want to place a series of text values at a certain column position, but may need to
adjust the position in the future, and then set a constant ID to the column position value, then use the 1D
in the column position of all the text values.

const COLP0S=22.25

text COLPOS,30,"Text line 1"
text COLPOS,31,"Text line 2"
text COLPOS,32,"Text line 3"

A given constant ID can be reused, and references to it in subsequent rule set lines will reflect the new
value. Also, a constant defined before the first rule set in the rule file will apply to any rule sets in the
file, unless the same ID is reused in any particular rule set. The global command may be used in place
of const for one of these pre-rule set constants. Likewise, the local command can be used in place of
const inside a rule set.

Note that case does make a difference. "COLPOS" and "colpos" are different constants. Take care not
to use constant names that may inadvertently cause unintended replacements. For example, it may be
tempting to use a constant named "font", but this would conflict with any font command. There would
be no conflict, however, between a constant named FONT and a lower-case font command.

Constant names are limited to 255 characters, and constant values are limited to 65,536 characters. If

you use a quoted value, the outer quotes are removed before the value is substituted into the rule file

commands. You can therefore include quotes inside a quoted constant. Unquoted values are trimmed of

leading and trailing spaces.

Long constant values can be built by including the constant name in multiple const commands, like this:
Const VAL="Initial Value”

Const VAL="VAL plus this appended data”
Const VAL="VAL and still more appended data”

Drivers: all

UnForm Version 7.0 116

COPIES, PCOPIES

Syntax

copies copies
pcopies copies

Description

These keywords are used to generate multiple copies of the form. The number of copies is specified by
the number copies. If the copies form is used, then the entire print job is duplicated the number of times
indicated. If the pcopies form is used, then each page is duplicated as it is printed, so the pages come
out collated together for each page.

The two versions of this keyword are mutually exclusive; the last one that is found in the rule set is the
one used. Note also the -c and -pc command line options can be used, though these keywords take
precedence, if specified.

Individual copies can be managed to any degree necessary via "if copy n" rule set logic, and also full
programming logic with the "precopy {}" and "postcopy {}" logic entry points. Use this to modify the
output device for specific copies, or to modify the content of specific copies.

To add attachments that are separate pages from the standard form pages, assign a copy to the
attachment, and add a notext keyword for that copy.

pcopies 2
if copy 2
notext

attach "/usr/unform/attachments/attachl.pcl”
end iIf

Examples:
copies 2 will print the entire report twice.
pcopies 3 will print each page three times.

Drivers: all, pdf driver treats copies as pcopies

UnForm Version 7.0 117

CPI

Syntax

cpi characters-per-inch

Description

The cpi keyword indicates what pitch UnForm should use when printing the text of a form or report.
From this, along with the paper dimensions, UnForm can determine the columns per page and ensure
that the proper pitch is selected. As UnForm uses cpi to calculate a cols value, cpi values are rounded to
allow even character spaces. It is advisable to use cols rather than cpi.

See also Ipi, cols, rows.

Examples:

cpi 16.66 will set the character spacing to a common "compressed" character pitch.

Drivers: laser, pdf, ps, zebra

UnForm Version 7.0 118

CROSSHAIR

Syntax

crosshair

Description

If this command is present in a rule set, then UnForm will generate a crosshair grid over the page,

making rule file development easier. Crosshair mode can also be turned on from a code block with the
crosshair$ variable.

Drivers: laser, pdf, ps

UnForm Version 7.0 119

DETECT

Syntax

detect column(s),row(s),"[[']]text"”
detect column(s),row(s),"[*[']]~regexpr"

Description

This option is used to identify a form from the data read by UnForm. If the -r option is used on the
UnForm command line, then detect keywords are ignored. Otherwise, each rule set's detects are
analyzed until a match is found. If more than one detect keyword is specified for a rule set, then the job
must match all of them. Detection occurs only at the start of the job, using the first page of data read
from the input stream.

If column and row are 0, then the whole page is scanned for the occurrence of the text. If columnis O
and row is greater than 0O, then the whole line is scanned. If column is greater than 0 and row is 0, all
rows are scanned.

column and row can contain ranges in the format from-through, such as '20-25' for the columns (or
rows) 20 through 25.

The format of the quoted third parameter determines how the detection scan is handled. If plain text is
specified, then a literal match for text is performed. If the text begins with the prefix character ~, then a
regular expression search for regexpr is performed.

If the text begins with #, then a case insensitive match is performed.

Following the optional ” character, but before the ~ character, may be a ! character, indicating a scan for
NON-matches.

The following prefix sequences are valid: », A~, 1, I~ A A~ meaning, respectively: case insensitive
text, case insensitive regular expression, text not found, regular expression not found, case insensitive
text not found, case insensitive regular expression not found.

Examples:

detect 0,2," INVOICE" would search for INVOICE anywhere on line 2.

detect 10-12,4,"'~../../.."" would match a date format at column 10, 11, or 12, on row 4.

detect 65-66,6-8,""1~../../.."" would match a date format NOT occurring at column 65 or 66, on rows 6
through 8.

UnForm Version 7.0 120

detect 0,2-3,"Ninvoice™ would match INVOICE, Invoice, invoice, etc. anywhere on lines 2 or 3.

Drivers: all

UnForm Version 7.0 121

DOWN

Syntax
down n [,gap]
Description

This instructs UnForm to allocate virtual pages down the physical page, evenly spaced within the top
and bottom margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the across command.

Down can be used inside an 'if copy' block, but is only compatible with non-collated copies. As a result,
copy-specific down is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

If the optional gap value is specified, it indicates the number of vertical pixels between each virtual
page. If it is not specified, the default is to use 1 row (as opposed to pixels).

See the 132x4 rule set in advanced.rul for an example of using the across and down commands.

Drivers: laser, pdf, ps

UnForm Version 7.0 122

DPI

Syntax
dpi 300 | 600 | 1200
Description

The dpi keyword instructs PCL printers to print at the specified dots per inch. The default dpi value is
300; however, many printers are capable of printing at 600 or 1200 dpi (or possibly even higher values).
This takes more printer memory, but results in crisper characters and lines.

Drivers: laser only

UnForm Version 7.0 123

DSN_SAMPLE

This command is used exclusively by the UnForm Designer tool, to store the name of a sample text file
to apply to previews generated in the design environment.

UnForm Version 7.0 124

DUMP

See the image command.

UnForm Version 7.0 125

DUPLEX

Syntax

duplex mode [, left-offset] [, top-offset]

Description

Duplex printing, if supported by your printer, causes printing on both sides of the paper.

mode can be 1 for long-edge binding, or 2 for short-edge binding. A mode of 0 will print in simplex
(single-sided) mode.

left-offset and top-offset are optional values in decipoints (1/720" inch) that indicate how far to shift the
page printing from the left and top edges, respectively. Note that margins may need to be adjusted (with
the margin keyword) if offsets are used.

Note that any duplex command will cause a page eject on a laser printer, so timing of the duplex
command is important. For example, if you use pcopies 2, and the second reserved for a back side
attachment, the duplex command should be in the 'if copy 1' block. This forces copy 1 to be on the front
side and copy 2 to follow on the back side. This concept is shown in the example below.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify
*Duplex mode entries which are used if present.

Examples:

pcopies 2
if copy 1
duplex 1
complete form for front of page
end if
if copy 2
attachment for back of page
notext
attach "terms.pcl”
end if

Drivers: laser, ps (the left offset and top offset options are ignored in PostScript, use margin instead)

UnForm Version 7.0 126

EMAIL

Syntax

email { to | {toexpr} }, { from | {fromexpr} }, { subject | {subjectexpr} }, { msgtxt | {msgtxtexpr} } [,cc
"cc"|[{ccexpr}] [bce "bec”|{beccexpr}], [,attach "attach"|{attachexpr}] [,otherhead|oh
"otherhead"[{otherheadexpr}] [,login "login"|{loginexpr}] [,password|pswd "password"|[{passwordexpr}]
[logfile filename]

Description

The PDF document being created will be emailed as an attachment upon completion, using the
information supplied. The name of the attached file is supplied with the "-0" argument on the UnForm
command line, or can be overridden by setting the variable output$ in a prejob code block.

Each of the first 4 values is positional, and each can be a literal value or an expression enclosed in curly
braces. The to value is the only required value, and must be a fully qualified email address, or a comma-
separated list of email addresses. The from value, if supplied, must also be a fully qualified email
address. If it is not supplied, then a default address will be used from the mailcall.ini file.

Note that the expressions are resolved as of the last copy of the last page of the job. If you need to use
data from an initial page, use a prejob code block to assign variables, and then use those variables in the
expressions.

In order to use this command, the mailcall.ini file must be edited to configure a mail server
(server=value) line. See the Email Integration chapter for more detail about configuration, and also for
information about using direct calls to the MailCall program bundled with UnForm. Direct calls enable
more control over email processing.

The msgtxt value can contain line-feed characters to break lines. These characters can be added in
expressions as CHR(10) functions or as $0A$ hex literals, or with the literal backslash-n (\n) character
sequence. Note that if the message text starts with a structure “<value>", then it is assumed to be an
HTML message, and the appropriate header tag is set to send the message as HTML.

Optional arguments can follow the message text value in any order, prefixed by the appropriate option
name:

cc Followed by a literal that is, or an expression in curly braces that resolves to, a list
of email addresses separated by commas. These addresses become the CC, or
carbon copy, list for the email.

bcc Followed by a literal that is, or an expression in curly braces that resolves to, a list
of email addresses separated by commas. These addresses become the BCC, or
blind carbon copy, list for the email. Blind carbon copy addresses are stripped
from the email header before the message is sent.

attach Followed by a literal that is, or an expression in curly braces that resolves to, a list

UnForm Version 7.0 127

of additional attachment files, separated by commas. Note that the PDF job itself
is always emailed as an attachment, so only use this option for adding additional
attachments to the message.

otherhead or oh

Followed by a literal that is, or an expression in curly braces that resolves to, one
or more line-feed or "\n" delimited custom email headers.

login

Followed by a literal that is, or an expression in curly braces that resolves to, a
login name. Some mail servers are configured to require a login and password for
authentication. This value and the password value are then required.

password or pswd

Followed by a literal that is, or an expression in curly braces that resolves to, a
login password. Some mail servers are configured to require a login and
password for authentication. This value and the login value are then required.

logfile

Followed by a file name to which SMTP logging will be written.

Example

prejob{

email_to$=trim(get(1,1,50))
invoice_no$=get(60,5,6)

¥

email {email_to$}, "sales@acme.com”, {"Invoice number "+invoice_no$}, "Please pay the attached
invoice promptly.\n\nBest regards,\n\nAcme Distributing™, cc "accounting@acme.com"

Drivers: pdf only

UnForm Version 7.0

128

ERASE, CERASE

Syntax
1. erase col|[{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. erase "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}

If cerase is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The text from the input, in the region indicated by the column, row, columns, and rows parameters, is
erased. This keyword may be used to easily clear unwanted text from the output. The text is erased
after text expressions and prepage and precopy code blocks are executed, so the information to be erased
is available to those routines. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If syntax 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no erased regions, or several.
column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format '@left,top,right,bottom’. To use a literal "@" character in
text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Also see the erase option of the hline and vline keywords.

Examples:

erase 1,5,30,4 erases text from a region from column 1, row 5, for 30 columns and 4 lines.

erase ""John Smith™,0,0,10,1 erases all occurrences of "John Smith™ from the page.

Drivers: all

UnForm Version 7.0 129

FIXEDFONT

Syntax
fixedfont fontcode

The fixedfont keyword overrides the default fixedfont setting found in the [default] section of the
ufparam.txt file. If there is no fixedfont value in that file, then the fontcode 4099 (Courier) is used.

The fontcode specified is used for the text sent to UnForm by the application. It must be a non-
proportional, scaleable font, except in the circumstance where a non-scaleable font provides the exact
pitch required by UnForm to lay out the columns within the margins.

Drivers: laser only

UnForm Version 7.0 130

FONT, CFONT

Syntax

1. font col|{numexpr}, row|[{numexpr}, cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode]
[,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,fixed | proportional]
[,color] [,rgb rrggbb] [,justification] [,upper|lower|proper] [.fit] [,weight w|weightname] [,style
style|stylename]

2. font "text|!=text|~regexp|!~regexp[@Ileft,top,right.bottom]", col|[{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]
[,underline] [,light] [,shade percent] [,fixed | proportional] [,color] [,rgb rrggbb] [,justification]
[,upper|lower|proper] [.fit]] [, weight w|weightname] [,style style|stylename]

If cfont is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The font keyword applies font control to all input stream text in the defined region of column, row,
columns, and rows. The other parameters are all optional. If used, numexpr is a Business Basic
expression that generates a numeric value for the column, row, columns, or rows.

If syntax 2 is used, then font attributes are applied relative to the occurrence of text or the regular
expression regexpr. In these cases, there may be no attribute regions, or several. column and row are O-
based in these formats, and can be negative if required. The search for text or regexpr can be limited to
a region on the page by adding a suffix in the format '@left,top,right,bottom'. To use a literal "@"
character in text or regexpr, it is necessary to specify "\@"".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Font Names and Numbers

fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, font fontcode can specify a specific fontcode supported by your
printer. For example, if your printer supports True Type Arial, specify "font 16602". Bitmap fonts (as
opposed to scaleable fonts) should not be used. fontname and fontcode can also be specified from the
"ufparam.txt” file. UnForm 7 uses HP/GL by default for laser output, and justification is supported on
all native printer fonts. However, if the —nohpgl command line option is used, then only certain, known
fonts (found in fonts.txt in the UnForm directory) can be properly justified, if the center, decimal, or
right justification option is used. When producing PDF output, only native PDF fonts are supported.
All others are mapped to one of these fonts: Courier, Helvetica, or Times-Roman.

UnForm Version 7.0 131

Symbol Sets

symset can be any symbol set supported by your printer. The default symbol set is "9J", using a
Windows ANSI character set. symset can also be a name from the "ufparam.txt” file. The pdf driver
only supports the Windows ANSI symbol set.

Point and Pitch Sizes

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. Values range from about 4 to 999.75. The default is based on the rows per page. Note that
for proportional fonts, the larger the number, the larger the size printed. Fixed fonts are the opposite.

Attribute Styles
The words "bold", "italic, "underline”, and "light" will apply the indicated attribute(s) to the text.

Shaded Text
percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.

Fixed and Proportional Text
Any font code below 4100 is presumed to be fixed (mono-spaced), and codes 4100 and up are presumed
to be proportional. To override this assumption, specify one of the words "fixed" or "proportional”.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue"”, "green”, "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF).

Justification

justification can be one of the following words: "left", "center", "right", or "decimal™. UnForm will
remove leading and trailing spaces from the text and justify it within the column specification. Decimal
justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file
under the [defaults] section.

Text Case Conversion

The mutually exclusive "upper”, "lower", and "proper" options will convert the text in the fonted region
to all UPPER, lower, or Proper case. Proper case capitalizes the initial letter of each word or word
segment preceded by a non-letter or non-digit character.

Fit to Width

If the "fit" option is used, then each line in the font region is scaled down, if necessary, to fit within the
defined number of columns for the region. This differs from the text command's fit option, in that each
line is treated distinctly, rather than the entire set of lines being calculated as a unit.

Weight and Style

Some laser printer fonts must be specified with given weight or style in order to be selected by the
printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,
by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be
found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and

UnForm Version 7.0 132

simply specifying an unsupported value does not produce the desired result. In fact, it may result in
selection of a different font entirely. Check your printer's documentation or control panel prints for
supported fonts.

Note that if you use identical font commands for two adjacent or overlapping regions, UnForm will
combine the regions. For proportionally spaced fonts, the result will be misaligned columns. To avoid
this, you can add non-operational options, like "black™ or "shade 100" to alternating commands, so
UnForm will not treat them as identical.

Examples:

font 10,20,29,50,cgtimes,12,center will change the text in the region starting at column 10, row 20, for
29 columns and 50 rows, to 12-point cgtimes. The text will be centered within the 29 column width.

cfont 1,20,132,52,courier,16.67 will change the font of the region specified to 16.67 pitch courier.
Since courier is a mono-spaced font, the number 16.67 is interpreted as a pitch (characters per inch)
rather than a point size.

cfont {pos(**'Description*=text$[22]},23,{pos(*'Units"'=text$[22])-1},60,univers,10 will calculate the
starting and ending column based upon where "Description™ and "Units" occur in line 22, and change
the font for that column range, for rows 23 through 60.

Drivers: all, but note the following:

PDF: maps pcl font names and numbers to Courier, Helvetica, or Times-Roman. Symbol set 9J is the
default and the only symbol set supported.

Ps: maps pcl font names and numbers to a setting defined in the [psmap] section of ufparam.txt.
Matching Typel font files can be installed in the psfont directory.

zebra: symbol sets are not supported. size is limited to scalability of the font in the printer's firmware,
typically integer multiples of the base font size in dots. Color is not supported, nor is justification.
Shading can be either 100% (black) or 0% (white). Font names are not mapped. Specify fonts instead
as font codes, which must be internal font identifiers, such as a-f, 0-9. See the ZPL documentation for
font codes.

The fit option is only supported in laser, ps, and pdf drivers.

UnForm Version 7.0 133

GS

Syntax
gs [yes | on | no | off]
Description
The gs command can be used to control graphical shading. The command by itself or followed by the
words "yes" or "on" will turn on graphical shading. Any other parameter value will turn graphical
shading off, resulting in the highly efficient, though not as finely rendered, internal laser shade
commands. The —gs command line option can be used to specify graphical shading by default.
If dpi is set to 600 or above (and the printer supports 600 dpi printing), graphical shading is even more
finely rendered. Note that some faxing products that convert pcl code into low-density bitmaps provide
more readable output without graphical shading. You can selectively turn graphical shading on or off
within "if copy™ blocks.
Using the gs command will add approximately 2000 bytes of additional overhead to a job.
Example:
gs on
if copy 2

gs off

output "|vfx —n " + faxnumber$ +" —F pcl"
end if

Drivers: laser only

UnForm Version 7.0 134

HLINE

Syntax

hline "text" [,erase] [,extend] [,thickness]

Description

Any horizontal occurrence of the text indicated, of at least the length indicated, will be replaced with a
horizontal line. The text must be composed of a single character repeated any number of times. There
can be multiple hline keywords in a rule set, if needed. For example, if both dashes (-) and equal signs

(=) are used for lines in a form, both can be specified in separate hline keywords.

This keyword is useful if the application already produces boxes and lines with standard characters.
Also see the vline keyword.

As with all box drawing, UnForm will consider line endpoints to be at the center position of a character,
which may impact how lines intersect. Lines are drawn 1 pixel (1/300 inch) thick.

If the "erase™ option is used, then no line is drawn. Instead, the horizontal text values are simply
removed from the output.

If the "extend" option is specified, the lines are extended % character left and right. The thickness
parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal "@" character in text, it is necessary to specify "\@".
Example:

hline "*---"" will search the report for 3 or more horizontal dashes. All such dashes found will be

replaced with a horizontal line.

Drivers: all

UnForm Version 7.0 135

HSHIFT

See the shift command.

UnForm Version 7.0 136

IF COPY ... END IF

Syntax

if copy n,n,...

end if

Description

The if copy command will cause any following commands, up to an end if command, to apply only to
the copy or copies specified. The feature is used to manipulate the content of various copies. For
example, you may wish to add a text message on a specific copy, or suppress a region of text with a
white shade. When combined with attach and notext keywords, attachments can be added without the

printing of text.

end if indicates that conditional processing of the rule set is done, and keywords apply to all copies
again. The end if keyword may also be entered as endif or fi.

Examples:

if copy 2 will process keywords following this line, until an endif keyword is found, and apply
keywords only to copy 2.

if copy 3,4,6 will apply keywords to the 3 copies identified.

Drivers: all

UnForm Version 7.0 137

IF DRIVER ... END IF

Syntax
if driver n
end if
Description
The command if driver will cause any commands to apply only when the rule set is evaluated under the
driver n. The driver is specified with the command line option "-p", and defaults to "laser”. end if
indicates that conditional processing of the rule set is done, and keywords apply to all copies again. The
end if keyword may also be entered as endif or fi.
Example:
This example will use the image "pdflogo.pdf" when "-p pdf" is used on the command line.
if driver pdf
image 1.5,2,15,6,"pdflogo.pdf"
end if

Drivers: all

UnForm Version 7.0 138

IF EXPRESSION ... END IF

Syntax
if expression

end if

Description

The if expression block test evaluates the expression as Business Basic syntax to determine if the
enclosed UnForm rule set commands should be included in the current job. Rule set parsing occurs after
the command line is parsed, but before the job is executed. The expression can therefore use uf.xxx
values and access -prm values via the gbl() or prm() functions.

end if indicates that conditional processing of the rule set is done, and normal parsing continues. The
end if keyword may also be entered as endif or fi.

Examples

if uf.pdftitles=""
title "Default Title"
end if

if prm("email)>""
command line contained -prm email=xxx
email {prm(“email™)},...

end if

Drivers: laser, pdf, ps, zebra

UnForm Version 7.0 139

IMAGE

Syntax

image col|{numexpr}, row|[{numexpr} [, cols|{numexpr}, rows|{numexpr}], “file" | {expr} [,color],
[,cache|nocache] [,option code] [,shade percent] [,gamma gamma] [,rotate rotate]

Description

The image command is used to print an image file specified by file or the expr which resolves to a file
name to each page when the output position is the column and row indicated. This option is typically
used to add graphic logos to forms. The column and row can be specified with decimal fractions to
1/100 character. The image file must be in the native format for the driver being used: pcl raster for
laser, PDF or 24-bit JPEG for PDF, EPS or JPEG for Postscript, zpl for zebra, or be in a format that can
be converted and scaled if Image Magick, Image Alchemy, or the Windows Support Server is
configured. See Automated Image Conversion, below.

If the row is 0 or 255, then UnForm will apply no positioning to the output. In this case, the positioning
desired should be present in the file. UnForm will scan the file, looking for image information and
possibly position data. Just that information will be sent to the output device. If the row is greater than
0 and less than 255, then UnForm will ignore any positioning that might be contained in the image file,
and instead place the upper left corner of the image where specified. This feature only works with pcl
images that include positioning data.

The optional cols and rows parameters are used in some circumstances. If not supplied, and scaling is
possible, then each defaults to the cols and rows that measure one inch. It is generally advisable to
include these parameters to ensure that all versions of output will produce the desired size whenever
possible. The following list specifies how cols and rows are used:

e PDF and Postscript images are scaled so that they fit within the cols and rows specified.
e PCL Laser images are scaled if automated image conversion is enabled (see below). Otherwise,
PCL images are printed in the size described in the image itself.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

If UnForm is producing PDF output, and the image file name ends in .pcl, .prn, or .rtl, then the file name
is modified to have a .pdf extension automatically. This allows a single fixed file name to accommodate
both laser and PDF output without special logic. If automated image conversion is enabled, and the
extension is other than one of these four values, then the image is converted to the appropriate format
and size. Similarly, if UnForm is producing Postscript output, a .prn or .pcl image name is modified to

UnForm Version 7.0 140

look for a .eps extension, and a .rtl or any color forced option (a color option here or —ci command line
option) will look for a .jpg extension.

Shading of an image, most often used for producing a watermark, can be specified using the shade
percent option. This causes a shade mask of the percent specified to be applied as a mask to the image,
resulting in a portion of the pixels being converted to white. The shading option is only supported
when producing PCL output.

The gamma and rotate options require the Windows Support Server. The gamma number is typically a
value between 0.5 and 2.0, but can vary by printer. The higher the number, the lighter the colors in the
image. Many articles on gamma correction are available on the Internet.

Creating Native Image Formats Manually

The most commonly used method is to use the publisher's web site image conversion utility, available
from the UnForm page at http://synergetic-data.com. You can upload an image file and receive back
images in PCL, RTL, or PDF format.

Another way to generate a PCL image for UnForm is to set up a HP LaserJet 111 or higher printer on a
Windows workstation, and specify the "port™ to be a file. You don't need a physical printer, just the
Windows printer driver. Then use a graphics or word processing tool to display the image and print to
that printer. Make sure that the properties are set to raster graphics and not vector graphics. Windows
will prompt for a file name, and produce that file as a PCL raster image that UnForm can use. Note that
even if the file has a .prn extension, it will still be a PCL file. Do not select a driver that uses PCLG, as
that may not produce a PCL raster image. Choose PCL5 driver, or a sub-level, such as PCL5e.

Note that for color laser printers, UnForm requires a HP RTL (raster transfer language) format file.
Color LaserJet printer drivers for Windows do not produce RTL images. Image Alchemy, from
Handmade Software Inc. (http://www.handmadesw.com), is recommended to create RTL files, or you
can use the image conversion utility mentioned above.

To create an image file for the pdf driver, use either Adobe Acrobat Distiller or rely on the automated
image conversion, if configured. If you use Distiller, be sure to set the job options to turn OFF the
"Optimize PDF" flag, and ON the ASCII flag. UnForm's PDF parser relies on a standard, non-optimized
PDF file format.

Both PDF and Postscript output support native JPEG files (24-bit only for PDF), and Postscript output
supports EPS files. These formats do not require automated conversion and scaling when the output
format is PDF or Postscript. Note, however, that some black and white printers do no support JPEG
images and report an error in the PostScript “colorimage” command.

PDF Image Considerations
Image file names can be up to 75 characters in length.

The default value for cols and rows is a measure of one inch, if not supplied.

UnForm Version 7.0 141

http://synergetic-data.com/
http://www.handmadesw.com/

PDF images are scaled to the largest size that will fit within cols and rows while maintaining the aspect
ratio of the source image.

If a JPEG image is supplied, it must be 24-bit color, rather than 8-bit grayscale.
Automated Image Conversion and Scaling

UnForm can be configured to use external image management software to perform scaling and
conversion as needed, if a supplied image is not in a supported native format. One such tool is the
Windows Support Server. The Support Server is capable of converting and scaling most image
formats to all the UnForm formats, including zpl, and in addition it supports the gamma and rotate
options. To enable image conversion via the Support Server, enable the sshost= and ssport= lines in the
[defaults] section of uf70d.ini, and disable the convert= line in the [images] section of uf70d.ini.

Two other products are the commercial Image Alchemy, available from http://handmadesw.com, and
open source ImageMagick from http://imagemagick.org. The configuration for these products is entered
into the [images] section of the uf70d.ini file. One entry, converter=program sets the path of the
converter executable (usually "convert" or "convert.exe" for ImageMagick, and "alchemy" or
"alchemy.exe" for Image Alchemy). Entries for command lines for pcl, pclc, and PDF are configured
for pcl, color pcl, and PDF, image conversion lines, respectively.

Related to the conversion are three options: color, nocache, and option code. These three options have
the following use:

If the word color is present, then a color image is produced by the conversion. Note that this has no
effect on PDF output, and it should not be used if the target device is a black and white laser printer, as
the image produced will probably be incompatible with that type of printer. The —color command line
option can also be used to specify color image conversions by default.

If the word nocache is present, UnForm will not cache the converted and scaled image. Caching
optimizes image management by re-using a previously converted image if the source image has not
changed. However, if the image command is used for one-time-use images, caching is not desirable as
it wastes disk space. The cached images are stored in the file images.dat, and unused images are
periodically removed from this file. An older option, cache, is ignored.

The option code entry can be used to reference secondary conversion lines in the uf70d.ini file, when
using Image Magick or Image Alchemy. By referencing code, different conversion command lines can
be configured and specified by the image command. The name referenced will be pcl-code or PDF-
code, as required. Option code values can be up to 10 characters long and are case sensitive.

If Magick or Alchemy conversion is configured, within each configured command line UnForm will
replace the following markers with appropriate values determined from the image command:

%i for the input image file
%0 for the output PDF or pcl image file that UnForm will use
%d for resolution in dots per inch

UnForm Version 7.0 142

http://handmadesw.com/
http://imagemagick.org/

%X for image width in pixels

%y for image height in pixels

Here is an example of configuration using Image Magick for UNIX, using the convert command:

Examples for ImageMagick (note pcl requires 5.5.7+)

converter=convert

pclc=%i %o -density %dx%d -dither -resize %xx%y >/dev/null 2>&1
pcl="%i" -density %dx%d -monochrome -resize %xx%y "%0" >dev/null 2>&1
pdf="%i" -density 300x300 -colors 256 "%o0" >/dev/null 2>&1

pdf-72="%i" -density 72x72 -colors 256 "%0" >/dev/null 2>&1

Examples:

image .5,1.25,""/usr/unform/logo.pcl’* will place the raster image contained in the named file at column
.5, row 1.25.

image {icol},{irow} {icols}{irows},{logo$} will place an image file specified in the variable logo$ at
the position specified by the variables icol and irow. If used in a pdf driver or when automated
conversion and scaling is invoked, the variables icols and irows would specify the image size (more
specifically, its bounding box) in columns and rows. All the variables would have to be created in a
code block, such as prejob{} or prepage{}.

Drivers: all.

Laser requires pcl raster format, pdf driver requires PDF format, zebra requires zpl format. If automatic
image conversion is configured, then laser and PDF images can be produced from various formats
supported by the configured converter. If the Windows Support Server is configured, then all native
image formats, including zpl, can be produced from standard image formats such as jpeg, tiff, png, and
bmp. Shading applies only to laser images. Rotation and gamma settings are only supported by
conversions performed by the Windows Support Server.

UnForm Version 7.0 143

IMAGES

Syntax
images "filelist”"|{expr} [,across n] [,down n] [,res|resolution n] [,color] [,tray value|{expr}]
Description

Appends image files from the filelist, which can be a literal or an expression. The list may contain any
number of semi-colon delimited file names. Each is converted to a native image in sequence and added
to pages following the current page, optionally scaled and tiled based on the across and down options.

The images are produced at 300 dpi unless otherwise specified. The images will by default be produced
in black and white unless pcl color images are indicted with a uf70c -ci command line option, or if the
color option is specified in the images command.

Note that images, particularly color images and high resolution images, can become quite large,
resulting in larger print jobs or pdf files than are typical.

Images must be scalable, so therefore images need to be in a format that can be converted via configured
image conversion and scaling programs or the UnForm Windows Support Server. Further, of course,
one of these image conversion options must be enabled. Common formats include jpg, tiff, bmp, and
png. Specifically, pcl images cannot be used as they are not scalable. In addition, if Ghostscript is
available on the server or the Windows Support Server, then pdf files can be included. This is
particularly useful when used with UnForm archive libraries, as pdf images can be extracted from the
libraries and appended to a job. See the Statement example in samples/arcdemo.rul for an example of
using the images command along with functions to extract archive images as PDF files.

Special performance benefits can be achieved with PDF files if Ghostscript 8.10 or higher is available,
either on the UnForm server (indicated by the pdffitpage=1 entry in uf70d.ini) or via the Windows
Support Server. These benefits are outlined below:

e For PCL output, PDF to PCL conversion and scaling is direct, so a single Ghostscript conversion
is all that is required. Otherwise, an interim conversion/scale pass is required. The performance
benfits of avoiding this interim conversion/scale pass are significant.

e For black and white PDF and PostScript output, a two-stage conversion is required, but the
interim image files can be scaled to the size required by the across or down options, resulting in
smaller images that are converted faster to the ultimate format required.

e Like with PCL, for color PDF or PostScript output, direct PDF to JPEG conversion and scaling
is available, so a single Ghostscript conversion is all that is required.

UnForm Version 7.0 144

The tray option is is provided to draw paper from the tray specified for the pages produced by the image
attachments. The tray value should match the syntax found in the tray command, or can be an
expression that produces an equivalent text value.

An images command may be placed inside an 'if copy' block or be run with an exec() command in a
code block in order to append images only on selected copies or pages.

Examples
images “termsconditionsl.jpg;termsconditions2.jpg”

images {all_invoices$},across 2, down 2, resolution 150, tray 5

Drivers: laser, pdf, postscript

UnForm Version 7.0 145

ITALIC

See the bold keyword.

UnForm Version 7.0 146

JAVASCRIPT

Syntax

javascript "text"|{expr}

Description

This command adds document-level javascript to the pdf document. This code is executed as the
document opens, so can be used to invoke actions when the document is opened or to define functions
for use in annotation actions specified with a javascript: url in the annotate command.

Examples

javascript “function showMessage(msg) { alert msg; }”

prejob{
crlf$=$0d0a$
js$="function showMessage(msg)”+crlf$+"alert msg;”+crlf$+"}”

}
javascript { js$}

Drivers: pdf only

UnForm Version 7.0 147

KEYWORDS

Syntax
keywords "keywordstring"” | {expression}

Description

If this command is present, then PDF document creation adds a keyword keywordstring, or the result of
expression, to the document content. This value is available in the general properties display dialog in
the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 7.0 148

LANDSCAPE, RLANDSCAPE

Syntax

landscape or rlandscape

Description

This keyword will ensure that UnForm produces output in landscape (horizontal) orientation. The
default orientation is portrait (vertical), unless UnForm encounters a PCL control code setting landscape
mode (hex 1B266C314F) on the first page. Use of this keyword will force landscape mode regardless of
PCL control codes found in the input.

The rlandscape command will turn on reverse landscape mode.

Note that landscape is supported inside 'if copy' blocks, allowing different copies to be in different
orientations.

Also see the portrait keyword.

Drivers: laser, ps, pdf (rlandscape is laser only)

UnForm Version 7.0 149

LIGHT

See the bold keyword.

UnForm Version 7.0 150

LINE

Syntax

1. line col1l[{numexpr}, rowl|{numexpr}, col2|{numexpr}, row2|{numexpr} [,thickness] [,color|lcolor
colorname] [,color|lcolor rgb rrggbb]

2. line "text|!'=text|~regexp|!~regexp[@left,top,right.bottom]", col1|{numexpr}, rowl|{numexpr},
col2|{numexpr}, row2[{numexpr} [,thickness] [,color|lcolor colorname] [,color|lcolor rgb rrggbb]

Description

A line is drawn between the first column and row and the second column and row. All dimensions can
be specified to 2 decimal places, in the range of -255 to +255. If used, numexpr is a Business Basic
expression that generates a numeric value for the columns and rows.

If syntax 2 is used, then the line is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no lines drawn, or several. coll and rowl
are 0-based, in these formats, and can be negative if required, and col2 and row?2 are the number or
columns and rows to draw from the offset position. The search for text or regexpr can be limited to a
region on the page by adding a suffix in the format '@Ieft,top,right,bottom’. To use a literal "@"
character in text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Line Thickness

The optional thickness parameter may be a number from 1 to 99, indicating the number of dots or pixels
to use when drawing the box outline. The default thickness is 1 pixel. UnForm always uses dots at
1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue"”, "green", "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF). To distinguish colors between the line and the shade region, use
"lIcolor” or "Icolor rgh™ for lines, and "scolor" or "scolor rgh™ for shade.

Examples

The following will draw a light blue line from the upper left corner to the lower right corner of a page:

line 0.5, 0.5, 80.5, 66.5, 1, color rgh 008000

UnForm Version 7.0 151

The following will underline the word “TOTAL?”, in conjunction with a font command:
font “TOTAL:”,0,0,5,1,cgtimes,12
line “TOTAL:”, 0, .75, {textwidth(*TOTAL.:”, “cgtimes”,12,0)},0

Drivers: laser, pdf, ps (laser cannot have —nohpgl enabled)

UnForm Version 7.0 152

LPI

Syntax

Ipi line-height

Description

The Ipi keyword indicates the vertical line height UnForm should use when printing the text of a form or
report. From this, along with the paper dimensions, UnForm can determine the rows per page and
ensure that the proper vertical placement is selected for each line. To save time and effort, use the rows
keyword and UnForm will calculate the Ipi.

See also cpi, cols, rows.

Examples:

Ipi 8 sets 8 lines per inch.

Ipi 6.6 uses a common laser printer value based on 66 lines in a 10 inch printable page length on letter
paper.

Drivers: all

UnForm Version 7.0 153

MACRO

Syntax

macro n

Description

This keyword will cause UnForm to invoke macro number n in the LaserJet printer. This macro must be
defined and downloaded to the printer as a permanent macro. This keyword could be used to call a
macro for a company letterhead, for example. For more information, see the Working With Macros

chapter.

Drivers: laser only

UnForm Version 7.0 154

MACROS

Syntax

macros on|off

Description

This keyword causes UnForm to invoke (or not invoke) macros for fixed raster elements (box, shade,
text, image, and attach). Macro usage can significantly reduce the data transfer requirements to the
printer, most noticeably on a serial or parallel connection with many pages of similar output. The

printer must have enough memory to store and execute the macros.

The default macros setting is "off"; the "-macros™ command line option establishes the default macros
setting to "on". This keyword overrides either default for this rule set.

Macros are numbered from 0 to 32767. UnForm will start macro definitions at 32000 unless the
"[defaults]™ section, "macrono” field is set to a different value in the ufparam.txc file. If a site uses
macros and finds a conflict with this number, then the value should be changed to allow an available
contiguous range for UnForm.

Drivers: laser only

UnForm Version 7.0 155

MARGIN

Syntax

margin[s] left, right, top, bottom

Description

The margin keyword is used to increase the margins used by UnForm when calculating row and column
positions. Normally, UnForm will use a 0.25 inch margin on all 4 sides, based on the paper size in use.
If you need to increase any margin, you can specify the dot offsets desired. Note that the values for left,
right, top, and bottom are entered in dots, which default to 300 dpi, but can be modified by the dpi
keyword.

For example, margin 75,75,0,150 (at 300 dpi) would set left and right margins to 0.5 inches, the top
margin would remain at 0.25 inches, and the bottom margin would be 0.75 inches.

Drivers: laser, pdf, ps

UnForm Version 7.0 156

MERGE

Syntax

merge "ruleset” [, "rulefile™]

Description

This command will insert the contents of the ruleset into the currently parsed rule set. If the rulefile
parameter isn't supplied, the current rule file is used. Otherwise, rulefile is opened in the UnForm
directory or by full path, if specified, and is scanned for ruleset. This command can be used to
incorporate common elements into many rule set formats. For example, a name and address heading
could be placed into a rule set called "address_header", and various forms could use the command
merge "address_header" to include the commands it contains.

Note that if no rulefile is specified, then the rule file specified for the job is used for the merge, even if
the merge is nested within another merge that specifies another rule file.

Unlike other UnForm commands, merge works within code blocks, such as precopy or prepage, as well
as outside of code blocks.

Drivers: laser, pdf, ps, zebra

UnForm Version 7.0 157

MICR

Syntax
micr col[{numexpr}, row|{numexpr}, "account”|{expr}, "check"|[{expr}
Description

Prints MICR font at the col and row specified, for laser check printing. If used, numexpr is a Business
Basic expression that generates a numeric value for the column and row. The account number must be
in the format :123456789:xxx"", where the colons surround the 9-digit bank number, and the balance of
the account number is terminated with, or contains, a quote. Quotes can be identified in a text literal
with <34>. A space after the bank number and terminating colon is optional. When the MICR code is
generated, colons or A become a "transit” symbol, B becomes an "amount™ symbol, quote or C become
an "on us" symbol, and a hyphen or D becomes a dash . Account numbers can contain these symbols,
spaces, and digits. The check number can be up to 12 digits long. This keyword supports 8 inch checks
only, not the smaller 6 inch variety, which requires a different format for the MICR.

If no "on us" symbol is present in the account number (i.e. no <34> or C character), then one is
appended automatically.

The fixed bank number is typically hard-coded, but can be an expression if enclosed in braces {}. The
check number will generally be an expression, which can use get() to retrieve the number from the
application print, or can be a variable defined in a prepage{} block.

Note that with proper soft font configuration, you can use the text command to print MICR encoded data
in any format, such as that required by a deposit slip. The same MICR soft fonts included for use with
this command can be used as text soft fonts.

Example:

micr 6,42.25,":123456789:9999-1234<34>" {trim(get(65,5,6))} would print a MICR encoded line
with the indicated bank and account number, and a check number derived from the input stream data
printed at column 65, row 5, for 6 characters.

Drivers: laser, ps only

UnForm Version 7.0 158

MOVE, CMOVE

Syntax

1. move col[{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, newcol[{numexpr},
newrow|{numexpr} [,retain]

2. move "text|!=text|~regexp|!~regexp[@Ieft,top,right.bottom]", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}, movecols|{numexpr}, moverows|{numexpr} [,retain]

Description
cmove causes cols and rows to be interpreted as the opposite corner of the region to be moved.

The move keyword moves a block of text to a new location on the page. Syntax 1 moves the region
indicated by col, row, cols, and rows so the new upper left point is at newcol, newrow. Syntax 2
searches for occurrences of text or the regular expression regexpr, respectively, and uses each location
found as a point from which col and row are measured (0-based movement). The rectangular region
specified is then moved movecols left or right, and moverows up or down. The search for text or regexpr
can be limited to a region on the page by adding a suffix in the format '@Ieft,top,right,bottom’. To use a
literal "@" character in text or regexpr, it is necessary to specify "\@".

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows, and also the "new" column and row (syntax 1) and the "move" columns and rows
(syntax 2).

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The optional "retain” parameter will cause UnForm to leave the text in its original location, in effect
copying the text rather than moving it.

Move commands simply shift text around in an internal array, so it is possible for moves to cascade to
other moves. Moves that specify positions (syntax 1) are performed in the order found in the rule set,
then moves that are relative to text (syntax 2) are performed in the order found in the rule set.

Note that move commands occur after any shift or vshift commands. If you would like to move data

based on positions before the shift and vshift commands, consider using a text command with an
expression using the cut() or mcut() functions.

UnForm Version 7.0 159

Examples:

move 5,10,40,4,20,20 moves text at column 5, row 10, 40 columns wide and 4 rows high, to the region
20,20,40,4.

move "'Date™,0,0,4,1,-4,0 moves all occurrences of the word Date left by 4 columns.

Drivers: laser, pdf, ps

UnForm Version 7.0 160

NOTEXT

Syntax
notext
Description

This keyword specifies that no report text should be printed. Typically, this would be placed inside an
"if copy n" block in order to add an attachment and prevent overwriting of the form text.

Example:

if copy 2
attach "/usr/unform/attachments/attach1.pcl”
notext

end if

Drivers: all

UnForm Version 7.0 161

OUTLINE

Syntax

outline [level]

Description

The outline keyword turns on the production of PDF outlines (also called bookmarks) and the automatic
display of the outline when the document is displayed in an Adobe Acrobat Reader. The content of the
outline is set page by page, by setting the variable "outline$" in a precopy or prepage code block. Multi-
level outlines can be specified by delimiting the levels with vertical bar (]) characters in the outline$
string.

If level is supplied, it must be an integer greater than zero. This indicates the highest outline level that
will be initially opened when Acrobat displays the document. The default behavior is to have all levels
open, but with exceptionally large reports, it may be desirable to have just the first 1 or 2 levels initially
opened.

See the outline rule set in advanced.rul for and example.

Drivers: pdf only

UnForm Version 7.0 162

OUTPUT

Syntax

1. output "output-device™

2. output {expression}

Description

The output keyword is used to modify the output device of any copy. Normally, all copies are printed
to the output device specified in the "-0" option, or to standard out on UNIX. However, it is sometimes
desirable to have copies of forms sent to different devices, such as a different laser printer, or a fax
product.

The output-device can be a printer device, a pipe or re-direct (starting with | or >), or a filename.
Beware of pipes or redirects on UNIX, noting that any shell-aware characters, such as ampersands (&),

must be quoted.

If the second syntax is used, expression is evaluated after each page of input has been loaded and the
prepage subroutine has been executed.

When used inside an if copy block, the output for that copy only is changed. Note that this feature is
only supported in the laser driver. When using the pdf driver, any change to output for different copies
is ignored.

The "output$" variable can also be set in a code block for equivalent results.

Example:

if copy 2

output "|Ip -daccounting -s"

end if

The above example would send the second copy of the form to the printer named "accounting™.

Drivers: laser, ps; pdf only for a job-wide specification outside of "if copy" blocks as PDF output cannot
be changed during printing.

UnForm Version 7.0 163

PAGE

Syntax

1. page rows

2. page cols, rows

Description

Syntax 1 specifies an input page length of no more than rows lines. If a form-feed character is
encountered first, then the page is considered complete also. This keyword is useful if the application
creates a form with line-feeds rather than form-feeds.

If syntax 2 is used, then each page worth of rows is divided into column groups of cols wide and treated
as virtual pages from left to right. For example, if an application prints mailing labels as 4-up labels
each 30 columns wide and 6 rows deep, then the command page 30,6 would produce 4 pages, each 6
rows. This can be useful to convert n-up continuous label print jobs into laser label jobs using the
across and down commands.

If no rows or Ipi keyword is specified, then n is assumed to be the rows per page.

Examples:

page 42 treats each 42 lines of input as a full page.

page 42

rows 66 treats each 42 lines input as a full page, but produces output scaled to 66 lines per page.

Drivers: all

UnForm Version 7.0 164

PAPER

Syntax

paper size

Description

The paper keyword overrides the "-paper” command line option. It tells UnForm the paper size to
instruct the printer to use, and also defines the page size from which UnForm calculates column and row

widths.

Common sizes for laser and PDF output include the following, plus any sizes defined in the [paper]
section of the ufparam.txt file (or ufparam.txc if defined).

Value Size

Letter 8.5 x 11 inches
Legal 8.5 x 14 inches
Ledger 11 x 17 inches
Executive 7.25 x 10.5 inches
A4 210 x 297 mm

A3 297 x 420 mm

For Zebra printers, indicated by the "-p zebran™ command line option, the size is given as a single word
made up of the width in inches, a letter "x", and the height in inches. For example, a 3-inch by 5.25-
inch label would be specified by paper 3x5.25.

If you specify the "custom" paper size for laser output, UnForm will use the defined size for scaling and
will issue the proper custom paper command to the printer, but you may still have to modify the custom
paper setting via the printer's control panel to avoid prompts to load custom paper into the printer.

Drivers: all

UnForm Version 7.0 165

PORTRAIT, RPORTRAIT

Syntax

portrait or rportrait

Description

This keyword ensures that UnForm will print pages oriented in portrait (vertical) fashion. If, while
analyzing the report text, UnForm detects a PCL control sequence to turn on landscape mode, then
landscape will be the default orientation. Use this keyword to guarantee that the orientation will be
vertical.

The rportrait command turns on reverse portrait mode.

Note that portrait is supported inside if copy blocks, allowing different copies to be in different
orientations.

See also the landscape keyword.

Drivers: laser, ps, pdf (rportrait is laser only)

UnForm Version 7.0 166

PRECOPY, PREDEVICE, PREJOB, PREPAGE
POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE

Syntax

precopy | postcopy | prejob | postjob | prepage | postpage {
code block

¥

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the form or report. They represent
six different subroutines that UnForm executes at specific points during processing. The code block can
be an arbitrary number of Business Basic statements; the total number of statements in all code blocks
can be about 6,000.

e prejob executes after the rule set has been read, and after the first page is read, but before any
printing takes place. Use this code to open files, define string templates, create user-defined
functions, and initialize job variables.

e postjob executes after the last page has been printed. Use this to close out your logic, such as
adding totals to log reports. There is no need to close files, since UnForm will RELEASE Business
Basic.

e predevice executes just after a device has been opened. With the laser driver, the output device can
be changed with the output command or by modifying the output$ variable in a prepage or precopy
code block. Whenever a new device is opened for any given copy, this code block is executed. The
programmer can then store information from the page that causes the device to be opened, such as a
customer code or fax information.

e postdevice executes just after the output device has been closed. Use this code block to perform
processing with prior output device, once UnForm has closed the device. For example, if the output
device changed when the customer number changed, then one or more pages for a given customer
would be in the output file and could be sent as a group to a fax product.

e prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to
apply to all copies.

e postpage executes after the last copy of each page has printed.

e precopy executes before each copy is printed. Use this to modify copy text content, to skip specific
copies, or to modify a copy's output device.

UnForm Version 7.0 167

e postcopy executes after each copy is printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart's content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page.

Note that the merge command, while not executable code, is honored within a code block. The merged
data must be valid code block syntax.

For more details about programming code blocks, see the Programming Code Blocks chapter.
Example:

This example shows how to use various routines to make copy 2 of a form be a conditionally faxed
invoice, using a CSV formatted file containing a customer ID and a fax number.

prejob {
exportfile$="/exports/faxnums.csv”
today$=dte(0:"YYYY-MM-DD”)
faxlog$="/exports/logs/fax”+today$+.l1og”
}

prepage {

invoice$=get(65,5,7)

custid$=get(65,4,6)
custname$=trim(get(10,10,35))
faxnum$=getfilefield(exportfile$, custid$, 2)

¥

precopy {
if copy=2 then:

if faxnum$>"" then:
output$="|[fx -n "+faxnum$
log(invoice$+" "+custid$+" "+custname$, faxlog$)
end if
end if

¥

Drivers: all, but predevice and postdevice are only supported by laser and pdf drivers.

UnForm Version 7.0 168

PROTECT

Syntax

protect [print] [,annotate] [,extract] [,modify] [,password “password” | {expr}] [, owner
“password” | {expr}]

Description

Without the protect command, UnForm generates a standard PDF document that can be opened,
viewed, printed, and modified by a user. This suffices for most business documents, but if an
application requires protection of the PDF contents, then this command can be used. It adds encryption
and protection to a PDF document.

By default, only viewing access is provided to users. Additional access can be granted by including the
following options:

print adds the ability to print the document.

annotate adds the ability to add text annotations and fill in form fields.

extract adds the ability to copy text or graphics from the document for pasting into other applications.
modify adds the ability to modify document contents.

password "xxx"[{expr} sets user password required for opening document

owner "xxx"[{expr} sets owner password. If the owner password is used to open a document, Acrobat
will allow modification to document permissions. Note an owner password won't automatically enable
restricted options. Instead, it only allows changing of those permissions and saving of those new
settings.

Password and owner expressions are interpreted at the start of the job, immediately after the prejob code

block is executed; therefore only page one data, or variables defined in the prejob code block, are
available for use.

Drivers: PDF only

UnForm Version 7.0 169

ROWS

Syntax

rows n

Description

This keyword specifies the number of output rows to use for the form or report. The placement of each
line is calculated to accommodate this many rows within the printable area of the paper. For example,
with letter paper, the printable area is about 10.5 inches; rows 66 will cause each line to be 10.5/66

inches high. If present, this value will override any calculation based on the Ipi keyword.

The number of rows (n) can be any value up to 255. It will default to 66 if no rows, Ipi, or page
keywords are present.

Note there is an important distinction between the page and rows commands. Rows refers to output
scaling, whereas page defines the number of text lines to read per page from the input stream. However,
if a page command is used, and a rows command is not, then the rows defaults to the value of the page
command.

Examples:

rows 80 will set the line height to accommodate 80 rows per page.

Drivers: all

UnForm Version 7.0 170

SHADE, CSHADE

Syntax

1. shade col[{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color]
[,rgb rrggbb]

2. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent, skip, times
[,extend] [,color] [,rgb rrggbb]

3. shade "text|!=text|~regexp|!~regexp[@Ieft,top,right.bottom]"”, col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color] [,rgb rrggbb]

If cshade is used, then cols and rows are interpreted to be the opposite corner of the shade region, and
columns and rows are calculated by UnForm.

Description

The region indicated by col, row, cols, and rows will be shaded, using the percent as the percent-gray
value. The region parameters can be specified as decimal values to 1/100 character. The region is
based on the full character cell, starting at the upper left corner of the cell. This differs from the box
keyword, which measures from the center point of a cell. The percent can be any value from 0 to 100,
where 0 is white (useful for erasing regions), and 100 is black. The default shade value is 5% (which
renders as 10% in PCL5 devices). PCL5 printers actually support only eight levels of gray, generally:
2%, 10%, 20%, 35%, 55%, 80%, 99%, and 100%. Values less than these are rounded up to the next
supported value. If you wish to issue a shade command that will do nothing, use -1 as the percent.

For compatibility with Version 1 rule files, Version 2 and above will convert shade values of 1, 2, 3, and
4 to 2%, 20%, 55%, and 100%, respectively.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

Syntax 2 provides for repeating regions to be easily specified. The skip parameter is a number
indicating the number of blank lines that follow the shade region. The times parameter is the number of
times to repeat the shade/blank pattern. UnForm will generate multiple rows of shading until either the
number of repetitions is met or the end of the page is found. For example, shade 1,21,80,2,1,2,8 would
produce 8 shaded regions, each 80 columns by 2 rows with shade grade level 1. Two blank lines would
separate the shade regions. These two parameters are ignored if the first parameter is a text string, as in
syntax 3.

If syntax 3 is used, then the shading is drawn relative to any occurrence of the text, or of text that

matches the regular expression regexpr. In these cases, there may be no shaded regions, or several.
column and row are 0-based, in these formats, and can be negative if required. The search for text or

UnForm Version 7.0 171

regexpr can be limited to a region on the page by adding a suffix in the format '@left,top,right,bottom'.
To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "I=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

All formats support the extend option. This simply expands the shade region by % character in all
directions, making it easy to fill in a box that is placed at the mid-point of each character position
surrounding the shade region.

Note that the box keyword also supports shading, and may be more convenient to use if an outlined
shaded region is desired.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

You can improve the look of shade regions on laser printers, especially at medium shade levels and 600
or higher dpi settings, by using the gs command.

Examples:

shade 41,3,40,6,2 will fill the indicated region with a medium (20%) shade.

shade 10.5,3.01,40,4.98,25 will shade the indicated region with 25% gray.

shade ""No. Item/Desc™,0,0,79,1,10,extend will shade from the position the noted text is found, for 79
columns and 1 line. The shaded region will then be extended %2 column and row in each direction. 10%
gray will be used.

shade 1,14,80,2,1,2,12 will produce a repeated pattern of 80 columns wide, 2 lines high, light shading,
followed by two blank lines. The pattern will be repeated 12 times, occupying a total of 48 lines.

Drivers: laser, pdf, ps

For Zebra (0% or 100% only), use a box command.

UnForm Version 7.0 172

SHIFT

Syntax

shift n

Description

The text in the report is shifted n characters to the right (or left, if n is negative). If a report starts in
column 1, but doesn't extend all the way to the right edge of the page, it is possible to shift the data to
the right to allow for box drawing around text elements on the left margin.

The placement of relative shading, drawing, and attributes is determined before any shift.

See vshift also, for shifting text vertically.

Example:

shift 1 will shift all text 1 character to the right.

Drivers: all

UnForm Version 7.0 173

SUBJECT

Syntax

subject "subjectstring” | {expression}

Description

If this command is present, then PDF document creation adds a subject subjectstring, or the result of
expression, to the document content. This value is available in the general properties display dialog in

the Adobe Acrobat Reader.

Drivers: PDF only

UnForm Version 7.0 174

SYMSET

Syntax

symset "symbolset"

Description

The symset keyword overrides the default symbol set setting found in the [defaults] section of the
ufparam.txt file. If there is no [defaults] section, then the symbol set 10U is used. Symbol set values for
the LaserJet are always integers followed by an uppercase letter. Be sure to quote the symbolset value to
maintain the uppercase letter (unquoted values in rule sets get converted to lowercase by UnForm's rule
file parser).

Symbol sets are used to display specific international character sets or symbols. See your LaserJet
documentation for symbol set codes supported by your printer.

If you plan to use the pdf driver in addition to the laser driver, you should specify your symbol sets as 9J
if you intend to use special characters in the ASCII 128 to 255 ranges.

Drivers: laser only

UnForm Version 7.0 175

TEXT

Syntax

1. text col|{numexpr}, row|{numexpr}, "text" | @name | $name | {expression} [,fontname] [,font
fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,rotate angle]
[,fixed | proportional | prop] [,color] [,rgb rrggbb] [,justification, cols ncols|icols ncols|ccols endcol]
[,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

2. text "text|!=text|~regexp|!~regexp[@left,top,right.bottom]", col|{numexpr}, row|{numexpr}, { "text" |
@name | $name | {expression} } [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic]
[,underline] [,light] [,shade percent] [,rotate 90 | 180 | 270]][,fixed | proportional | prop] [,color] [,rgh
rrggbb] [,justification] [,cols ncols|icols ncols|ccols endcol], [eraseoffset cols, erasecols cols] [,getoffset
cols, getcols cols] [,wrap] [,fit] [,spacing spacing] [,weight w|weightname] [,style style|stylename]

Description

The text indicated in quotes will be printed at the column and row indicated by col and row. The
column and row can be specified to 1/100 character. The position specified becomes the baseline left
edge for the first character. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If text begins with "@", such as @company, then the substitution file is searched. In the example
above, if a line company=ABC Company was found, the text "ABC Company" is used. The
substitution file defaults to "subst", but may be specified on the command line with the "-s" option.

If text begins with "$", then the operating system environment is searched for the indicated variable and
its value is used. For example, $USER would use the value stored in the environment variable "USER".

If text should be a literal value that starts with @ or $, then use \@ or \$, respectively.

If braces surround text, then it is taken to be an expression to be evaluated after each page of input has
been loaded and the prepage subroutine has been executed. The expression can be any valid Business
Basic statement that would appear on the right side of an assignment statement and produces a string
data type result. Some UnForm supplied functions and data can be useful, such as TEXT$[], which
contains the text of the page in an array, and GET(col,row,length), a function that returns data from the
TEXTS$ array. For example, {"Copy 2, generated on "+date(0)} would generate text similar to this:
"Copy 2, generated on 03/31/99". See the Programming Code Blocks chapter for more information
about programming expressions.

If text contains line-feed characters (CHR(10) or $0A$), or the mnemonic character string "\n", then

UnForm will break the text into multiple lines and space them according to the spacing value. For
example, if the point size is 12, and spacing is set to 1.5, then line spacing is set to 18 points. The

UnForm Version 7.0 176

default spacing is calculated from the number of rows per page, so multi-line text data will match the
vertical placement of single line text data.

If syntax 2 is used, then UnForm will search for occurrences of text or the regular expression regexpr.
In this case, col and row become 0-based offsets from each location where matches are found. In
addition, the erasecols cols and eraseoffset cols can be used to remove match text. The search for text or
regexpr can be limited to a region on the page by adding a suffix in the format '@Ieft,top,right,bottom'.
To use a literal "@" character in text or regexpr, it is necessary to specify "\@".

If the syntax "!=text" or "I~regexpr" is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Font Names and Numbers

fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, a specific fontcode supported by your printer can be specified
by its font number. For example, if your printer supports True Type Arial, specify "font 16602".
Bitmap fonts (as opposed to scaleable fonts) may be specified, but proper use depends on the form's or
report's cpi value matching that of the font. Bitmap fonts have low fontcode values, like O for Line
Printer, or 4 for Helvetica. fontname and fontcode values can also be specified from the "ufparam.txt”
file.

Note that font 15002 is configured by default (in ufparam.txt) as a reference to the default MICR soft
font, and can be used (with 'fixed, 8' options) to print MICR encoded text lines in cases where the micr
command can't be used, such as with deposit slips, unusual bank account numbers, or non-standard
check sizes.

Symbol Sets

symset can be any symbol set supported by your printer. The default symbol set is "10U", using the PC-
8 character set. Other examples include 19U for Windows ANSI or OY for Postnet Bar Code. You can
also specify symbol sets by name from the "ufparam.txt™ file. Only symbol set 9J is supported by the
pdf driver.

To include non-printable characters, such as control codes or 8-bit characters from a specific symbol set,
include the character's numeric (ASCII) value in angle brackets. For example, to include a copyright
symbol from the Desktop (7J) symbol set, use something like this: "<165>2000 Synergetic Data
Systems Inc.".

Point and Pitch Size

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. The values range from about 4 to 999.75 with a default of 12. PCL printers generally round
this value to the nearest or smallest ¥ point. Note that for proportional fonts, the larger the number, the
larger the size printed. Fixed fonts, such as Courier, are the opposite. If you specify the "fit" option,
then the size value represents the largest acceptable size.

UnForm Version 7.0 177

Fit and Wrap Options

The "fit" option will scan text for line breaks and decrease the size value as necessary to ensure that all
lines will fit in the number of specified ncols or through endcol. The smallest point size that will be
used is 4, and the largest pitch that will be used is 30.

The "wrap™ option will scan text and insert line breaks as needed to ensure no line at the specified size
will exceed the specified ncols. If no spaces exist in word that exceeds the line width, UnForm will
print the word in its entirety, exceeding the allocated space.

The "fit" and "wrap" options are mutually exclusive, and in either case, if no ncols or endcol value is
specified with the "cols" option, then ncols defaults to the page width in columns minus column.

Attribute Styles
The attribute words "bold", "italic”, "underline™, and "light" will apply the indicated attribute(s) to the
text.

Shading
percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.
Note that the gs command can be used to improve laser printer shading.

Rotation

The "rotate™ option will cause the text to be rotated around the baseline left edge at the angle specified.
If the —nohpgl option is used while producing pcl laser output, then the angle must be 90, 180, or 270
degrees. Any angle can be specified for other formats.

Fixed and Proportional Spacing

Specify "fixed" or "proportional™ (or "prop™) to override the default of fixed for Courier (or any fontcode
below 4100), and proportional for all else. For example, if a mono-spaced font, such as the MICR soft
font, has a font code higher than 4100, then the "fixed" option is required in order to ensure the proper
font is selected, rather than a default proportional font. Proportional vs. fixed carries a very high
priority when a printer chooses a font, and if the desired font is not specified with the correct spacing, a
different font will be chosen by the printer.

Color

Color can be specified as "white", "cyan", "magenta”, "yellow", "blue", "green”, "red", or "black", or
you can name an RGB value as a 6-character hex string with "rgb rrggbb”, where rr is red (00-FF), gg is
green (00-FF), and bb is blue (00-FF).

Justification
justification can be one of the following words: "left", "center", "right", "decimal”. UnForm will
remove leading and trailing spaces from the text and justify it within the column specification. Decimal

justification will use a "." character unless a "decimal=character" line is placed in the ufparam.txt file
under the [defaults] section.

For justification, you must also specify ncols or endcol with the "cols", "icols", or "ccols™ option, so that
UnForm can determine the right edge of the justification region.

UnForm Version 7.0 178

Weight and Style

Some laser printer fonts must be specified with given weight or style in order to be selected by the
printer. For example, the font Clarendon Condensed is only available if the condensed style is specified,
by adding "style 4" or "condensed" to the font command. Style and weight options and codes can be
found in the ufparam.txt file. Note that fonts are expressly designed for certain weights and styles, and
simply specifying an unsupported value does not produce the desired result. In fact, it may result in
selection of a different font entirely. Check your printer's documentation or control panel prints for
supported fonts.

Get Text From Input Stream

If "getoffset” and "getcols" are specified in a syntax 2 command, then the value printed is taken from the
data stream at the offset and length specified from each occurrence (any text value supplied is ignored).
Further, "eraseoffset" and "erasecols™ can be used to remove any data stream text from the point of
occurrence as well.

Barcode Note

The text command can be used to print a human-readable version of a barcode value, which can be
useful in cases where the human readable value differs from the supplied value, such as UPC-E, or when
a check digit value is needed.

Text in this syntax: "bcdsss|value” to print the human readable barcode value for symbology sss and
barcode text value, "ckl1sss|value™ to print check digit 1, or "ck2sss|value" to print check digit 2. See the
barcode command for symbology values.

Special Symbol Fonts

There is a difference between PDF and laser output for special symbols. In the laser printer
environment, you need to select a symbol set and font that contains the special characters you want, but
in the PDF environment, you need only select the font (font 4141 for Dingbat and 16686 for Symbol).
Once a symbol set or font is identified, use the appropriate decimal value of text to print the character
you want. The easiest way to do this is with angle bracket notation in a literal, like "<182>", or with the
CHR function in an expression, like {CHR(182)}.

On many LaserJet printers, the available symbol sets and fonts differ from those specified in UnForm's
ufparam.txt file, and the only way to know for sure what is available is to do a font list print on the
printer. This should show you the proper symbol set and font number to use for your printer.

Postscript Typel Fonts

All Postscript printers include a base set of fonts, including Courier, Times-Roman, and Helvetica. The
[psmap] section of ufparam.txt links PCL font numbers to Postscript font names, and the most often
used font numbers are mapped in the default ufparam.txt file. The [psmap] section looks like this:

[psmap]
Maps pcl font numbers to postscript font names. Each number is

set to up to four font filenames for normal, bold, italic, and
bold-italic fonts in order. If a fontname.pfa or fontname.pfb

UnForm Version 7.0 179

file is present in the psfont directory, then it is downloaded when used.
Such fonts must be Adobe Typel fonts.

#

psfont/<fontname>.afm files provide metrics.

4099=Courier,Courier-Bold,Courier-Oblique,Courier-BoldOblique
4101=Times-Roman, Times-Bold, Times-Italic, Times-Boldltalic
4102=Courier,Courier-Bold,Courier-Oblique,Courier-BoldOblique
4141=7apfDingbats

In order to use custom Typel fonts, follow these steps:

e Install the font’s .pfa or .pfb files, as well as the metric file (.afm) in the psfont directory.

e Assign a unique number to the fonts, using the same normal, bold, italic, and bold-italic
sequence found in the standard font mapping, if the font provides these versions.

e Optionally map a font name to the number in the [fonts] section of ufparam.txt.

e Text or font commands can now specify the font by number (font n) or name.

UnForm Version 7.0

180

Examples:
text 10,2,""'SOLD TO"™ prints the text SOLD TO at the indicated position.
text 120,3,$LOGNAME prints user's login name at column 120, line 3.

text 1.25,63.25,{"'Printed on ""+date(0)}, cgtimes, 6, italic would place a small (6 point), italic note
about the date near the lower left corner of a page.

text "TOTAL:",-1,0," Total:",cgtimes,12,bold,eraseoffset 0, erasecols 6 changes words TOTAL.: to
Total: in CGTimes, 12 point, after backing up 1 column from where TOTAL.: is found. It also erases the
word TOTAL: to avoid overprinting.

text 67,21,""bcd125|00010000654" ,univers,12 will print the UPC-E human readable barcode value.

text 20,62 {terms$},cgtimes,10,cols 40,wrap,spacing 1 will print a paragraph of text contained in
terms$ between column 20 and 59, in CGtimes 10 point text, word-wrapping as necessary, using a
nominal line height matching the 10 point text.

text {pos(*'Item"'=text$[20])},21," Number"*,cgtimes,12 will print the word "Number" on line 21, in
the same column where the word "ltem" is found in line 20.

text 20.5,20,{mcut(10,20,12,40,"**,""y"",""y"")},cgtimes,12,right will cut text from the data stream, at
column 10, row 20, for 12 columns, 40 rows, retaining line breaks, and print it as a column of 40 rows at
column 20.5, row 20. The column will be printed in the font CGtimes, 12 point size, right justified.

text 1,60,{mcut(1,60,200,5,"**,""**,""")},univers,10,wrap,cols 60 will cut a large message block from
the data stream, at column 1, row 60, for 200 columns, 5 rows, removing line breaks. It will then print it
at column 1, row 60, at 10 point size and word wrapping to make it fit within 60 columns.

Drivers: all. pdf driver fonts map to Courier, Helvetica, or Times-Roman, and support only symbol set
9J (Windows ANSI characters). Ps maps based on the [psmap] section in ufparam.txt. Zebra fonts are
limited in scalability, and the font codes are letters or numbers that identify internal font codes specified
in the ZPL documentation. Zebra shading is limited to 0% or 100%. Zebra doesn't support colors or
justification. Wrap and fit options are only available on pcl and pdf drivers. Light and underline
options are only supported by the pcl driver.

UnForm Version 7.0 181

TITLE

Syntax

title "titlestring” | {expression}

Description

If this command is present, then PDF document creation adds a title titlestring, or the result of
expression, to the document content. This value is available in the general properties display dialog in

the Adobe Acrobat Reader.

Drivers: pdf only

UnForm Version 7.0 182

TRAY

Syntax

tray paper-source

Description

The tray keyword can be used to specify the paper source for any copy or for the print job. If, for
example, you have two input trays, one with letterhead stock and one with plain stock, you can specify
which paper stock to use for any form or copy of a form.

The paper-source is printer dependent. Typically, tray 1 is an upper tray source, tray 2 is a manual feed
source, and tray 4 is a lower tray paper source. These will likely not coincide with physical tray
numbers labeled on the printer itself, unfortunately. To determine the proper tray values, see your

printer's documentation for the paper source command.

The printer model’s (-m command line option) PPD file (or generic pcl.ppd or ps.ppd files) can specify
*InputSlot paper-source entries which are used if present.

Drivers: laser, ps only

UnForm Version 7.0 183

UNDERLINE

See the bold keyword.

UnForm Version 7.0 184

UNITS

Syntax
units dpi | char
Description

As UnForm parses a rule set, column and row specifications are normally interpreted as decimal column
and row numbers that align enhancement elements such as boxes and shade regions with characters in
the source data. If you need to specify absolute dot positions, however, you can change the units to dpi.
From that point in the rule set, until a units char is found, row and column values are interpreted as
integer dot positions. Note that the dpi keyword has a direct impact on dpi units, though no impact on
char units.

For example, the following will print two text phrases at column 1 inch, row 1.5 inch.
units dpi

text 300,450,"Hello, world"”

dpi 600

text 600,900, "Over printing hello world"
units char

Drivers: laser, ps, PDF

UnForm Version 7.0 185

VLINE

Syntax

vline "text" [,erase] [,extend] [,thickness]

Description

Any vertical occurrence of the text indicated, of at least the length indicated, will be replaced with a
vertical line. The text must be composed of a single character repeated any number of times. There can

be multiple vline keywords in a rule set, if needed.

This keyword is useful if the application already produces boxes and lines with standard characters. See
also the hline keyword.

As with all box drawing, UnForm will consider line end-points to be at the center position of a
character, which may impact how lines intersect. Lines are drawn one dot (1/300th inch) thick.

If the "erase™ option is used, then no line is drawn. Instead, the vertical text values are simply removed
from the output.

If the "extend" option is used, the lines are extended Y2 characters up and down. The thickness
parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal "@" character in text, it is necessary to specify "\@".

Example:

vline "' will search the report for pipe characters. All such characters found will be replaced with
vertical line draw (box) characters.

Drivers: all

UnForm Version 7.0 186

VSHIFT

Syntax

vshift n

Description

The vshift keyword shifts text vertically down (or up, if n is negative) the indicated number of lines.
The shifting is done before placement of any fixed shading or boxes. Lines shifted out of the printing
region (line 1 through the page specification, or 255 if not specified) are not printed. See the shift
keyword, also, for horizontal shifting.

The placement of relative shading, drawing, and attributes is determined before any shift.

Example:

vshift 1 shifts all text down 1 line, providing room for a box definition at the top of the page.

Drivers: all

UnForm Version 7.0 187

ZCOPIES

Syntax

zcopies n | {expr}

Description

Setting this value will cause UnForm to add a ZPL copies command (“PQ) to the print output,
specifying the printer generate n or numeric expression expr duplicate labels. This is different than
using an UnForm copies or pcopies command, as it instructs the printer to generate duplicate labels at
the printer, rather than allowing for distinct formatting for different copies. The benefit of using this
command is that the copies are produced by the hardware and not the print stream output, so overhead is
reduced and performance is higher.

Alternatively, in a prepage or prejob code block, the variable zcopies$ can be set to a numeric string (i.e.
zcopies$=str(10)).

Drivers: zebra

UnForm Version 7.0 188

ZDARKNESS

Syntax

zdarkness n | {expr}

Description

Setting this value will cause UnForm to send a ZPL print darkness command (~SD) to the printer. The
darkness parameter can be a number n or a numeric expression expr. The value of n should be an

integer between 0 and 30, based upon current ZPL documentation.

Alternatively, in a prepage or prejob code block, the variable zdarkness$ can be set to a numeric string
(i.e. zdarkness$=str(5)).

Drivers: zebra

UnForm Version 7.0 189

ZSPEED

Syntax

zspeed n | {expr}

Description

Setting this value will cause UnForm to send a ZPL print speed command (“PR) to the printer. The
value of n or result of expr should be an integer between 2 and 6, or between 8 and 12, based upon

current ZPL documentation.

Alternatively, in a prepage or prejob code block, the variable zspeed$ can be set to a numeric string (i.e.
zdarkness$=str(2)).

Drivers: zebra

UnForm Version 7.0 190

WORKING WITH MACROS

Using macros can increase the speed and efficiency of printing your enhanced forms and documents by
storing fixed raster graphics (e.g. logos) on the printer instead of transmitting these graphics on every
page being printed. With the graphics stored on the printer, only 12 to 14 bytes are transmitted to the
printer to select the macro to print. The time savings for printing are most noticeable when your system
can't communicate to your printer at a high speed. For parallel or local network connections, macro
usage doesn't often make too much difference. However, if you use serial connections or wide area
network printing with low- or shared-bandwidth, then implementing macros can help performance. The
more graphics used in enhancing forms, the more print transmission time you can save by using macros.

The PCL5 specification defines two types of macros: temporary and permanent. Temporary macros are
downloaded at the start of a print job, and can be executed by the printer until it is reset at the end of the
job. Permanent macros remain in printer memory until the printer power is turned off. A number from

1 to 32767 always identifies macros.

To access permanent macros, simply add macro n (n=macro #) to the rule set. To instruct UnForm to
utilize temporary macros, add the macros on command to the rule set. UnForm will then generate
temporary macros for any fixed elements of the job, download them at the start of the job, and execute
them as the job is printed.

If you print large batches of forms at one time, and use a serial or low-bandwidth network connection,
temporary macros can produce considerable time savings by reducing the amount of data transmitted to
the form. For example, if a logo image is 20,000 bytes, and line drawing and shading add another 5,000
bytes, a 50 page form will save about 49 x 25,000 bytes, or about 1.2MB. At typical serial throughput,
this could save as much as 10 minutes of print time. High-speed printer connections (parallel or local
network) only produce minimal time savings, which is sometimes offset by the extra overhead incurred
by UnForm to manage the macros in memory.

UnForm also provides the ability to generate permanent macro files. Permanent macros can be
downloaded when the printer is turned on, and then UnForm can execute them without the overhead of
downloading them at the start of a job. To utilize this enhanced functionality, you must modify the rule
file and create a command line script to load the graphics into the printer.

To use this capability, you should split a rule set into two rule sets. One will be used to generate the
permanent macros (there can be a macro for each copy defined in the rule set); the other will be used as
before, but will replace the elements placed in the macros with macro n commands.

The rule set used to generate the macro can contain these commands that are in fixed positions: image,
attach, box, shade, and text. It can also contain if copy blocks. It should not contain any other
commands or any of the named commands if they incorporate relative positioning. Detect commands
are ignored; you will use the "-r ruleset” command line option instead. The remaining commands
should be left in the original rule set, and macro n commands added based upon the macro numbers
assigned in the command described below.

UnForm Version 7.0 191

Next, you need to generate macro files for each copy that is used in the rule set. To do this, use this
command line:

uf70c —makemacro macro-number —f rulefile —r macro-rule-set —macrocopy copy —o output-file

UnForm will generate a permanent macro in output-file, numbered as macro-number. This is the same
number you would then specify in the regular rule set, as macro macro-number. On UNIX, the output
can be piped directly to the spooler, either by removing the —o option or by using a quoted pipe as the
output file: —o "|lp —o raw —d printername".

UnForm Version 7.0 192

REGULAR EXPRESSIONS

Regular expressions are supported in many of UnForm's keywords, and can be used to great advantage
in detect statements and relative enhancements. Regular expressions are similar to, but much more
powerful than, MS-DOS or UNIX wildcards.

A regular expression is used to match patterns in text. By using special characters, called meta
characters, UnForm can be instructed to search for patterns, such as dates or codes, and use them in
processing. Below is a description of the various meta characters and how to use them.

e The simplest regular expression contains no meta characters. It just matches itself. John will match
any occurrence of the text "John".

e Brackets can be used to match any of a group of values: [JjJohn will match both "John™ and "john".

e |f arange of letters or numbers is valid in a position, then the range can be indicated in a similar
manner: [A-Za-z]ohn will match any letter, upper or lower case, followed by the letters "ohn".

e If single character positions are not enough, then groups of options can be used with parentheses and
vertical bars, like this: (John|Jack|Jill) Smith, which matches any of the first names, along with
"Smith".

e If any character will do in a position, use a dot: Jo.n will match "Jo", followed by any single
character, followed by "n".

e To repeat any pattern, including a dot, use an asterisk (*) for 0 or more repetitions, or + for 1 or
more repetitions: J.*n will match a "J", followed by 0 or more characters, followed by "n". Jo+n
would match a "J" followed by one or more "0"s, followed by "n".

e You can include multiple meta characters and patterns in the expression. For example, to search for
3 digits followed by 2 letters: [0-9][0-9][0-9][A-Z][A-Z].

e To disable the special meaning of any of the meta characters, prefix it with a backslash. For

example, a phone number might include parentheses; to include them in the expression, they must be

e The meta charactersare: .,*,+,(,),|,[,], " and $.

UnForm Version 7.0 193

SAMPLE RULE FILES

UnForm is supplied with several sample report text files and associated rule sets. A description of each
report and rule set follows. Each of the sample reports is in the UnForm directory, named "samplen.txt."
All example rule sets can be found in the files simple.rul and advanced.rul in the UnForm directory.

The simple.rul file contains a series of examples that use the sample invoice text file, samplel.txt.
Beginning with the rule set simplel, and incrementally advancing in capabilities through simple4, this
rule file is designed to help a new user learn fundamental UnForm concepts. To try these out, use this
command, varying the rule set name (-r argument) simplel with one of the four samples, simplel,
simple2, simple3, or simple4:

uf70c —i samplel.txt —f simple.rul —r simplel —o output-device

The advanced.rul file contains rule sets that show a variety of topics, and is designed to show advanced
concepts. To produce these samples on your own laser printer or to a PDF file, you can use the
following command, substituting the proper sample text file:

uf70c —i sample-file —f advanced.rul —o output-device

For the output device, you can use a device name, like LPT1 or /dev/Ip0, a file name, or a quoted pipe
command to a spooler. For example, to print the first sample to a spooler, use something like this:

uf70c —i samplel.txt —f advanced.rul —o "|lp —dhp —oraw"

To produce PDF versions of these files, change the output device to a PDF file name, and add "-p pdf"
to the command line:

uf70c —i samplel.txt —f advanced.rul —p pdf —o invoice_sample.pdf.

Change "-o invoice_sample.pdf" to "-o client:invoice_sample.pdf" to store the output on the client's
system.

A few of the samples don't support detection capabilities, and they must be specified on the command
line with a "-r ruleset"” option. If necessary, the documentation will state this requirement.

UnForm Version 7.0 194

SIMPLEL - INVOICE RULE SET (SIMPLE.RUL)

This is the first example of an invoice rule set, found in simple.rul. To produce this example:

uf70c —i samplel.txt —f simple.rul —p pdf —o client:simplel.pdf

\ A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simplel]

Detect statements are used to identify this form from any other report that the application might send to
the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to a
particular form (though it can be configured to do so). Instead, it reads the first page of data, then
compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that

e adate (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at
column 61, row 5

e 6 characters will appear at column 9, row 11

e adate, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. ' # invoice date and #
detect 9,11,"~...... " # customer code
detect 10,21,"~../../.." # ord date and cust code

The following lines define that the dimensions of the page are 80 columns by 66 rows. All positioning
will be based on 80 columns and 66 rows appearing within the printed margins of the page.

cols 80 # max output columns
rows 66 # max output rows

The header section draws a box around the entire form with a cbox command, then adds a logo and
some header text. The" \n" character sequence represents a line break, so you can print a column of
text easily. All the text commands are using the univers font, which is standard in all supported laser
printers and which maps to Helvetica in PDF output.

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl”

text 15,2,"Company Name',univers,14,bold

text 15,3,"Company Address\nCompany City, St Zipcode\nCompany Phone",univers,12,bold
text 15,6,"Web: www._myweb._com\nEmail: sales@myweb.com",univers,11,bold

text 70,2,"INVOICE" ,univers,16,bold

UnForm Version 7.0 195

The upper right of the form contains a box with grid lines and some title text, placed around the existing
text supplied from the input stream (in this example, the file samplel.txt). The cbox command draws an
outer box using the primary dimensions, and then adds internal horizontal lines at rows 6 and 8, and
internal vertical lines at columns 69 and 78. The second row simply duplicates the bottom row, but
adds 20% shading between rows 6 and 8.

Additional heading and box sections are drawn in a similar manner, for the remainder of the form. All
the drawing simply adds details on top of, or around, the input data stream.

iInvoice # section

cbox 60,4,80.5,8,crows=6 8::20,ccols=69 78
text 61,7,"Date",univers,italic,10

text 70,7,"Invoice #",univers,italic,10
text 79,7,"Pg",univers,italic,10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20
text 2,11,"Sold To",cgtimes,italic,10

text 45,11,"Ship To",cgtimes,italic,10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19, "0Order\nNumber" ,univers,italic,10

text 10,19,"0rder\nDate" ,univers,italic,10

text 19,19,"Cust.\nNumber" ,univers,italic,10

text 26,19,"SIs\nPrs",univers,italic,10

text 30,19, "Purchase\nOrder No.'",univers,italic,10
text 43,19, \nShip Via",univers,italic,10

text 57,19,"Ship\nDate",univers,italic,10

text 66,19, \nTerms" ,univers,10,italic

detail section

cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 69
text 1,23,"Qty\nOrd",univers,italic,10

text 6,23,"Qty\nShip",univers,italic,10

text 11,23,"Qty\nBkord",univers,10,italic

text 17,23,"\nltem & Description”,univers,italic,10

text 52,23,"\nU/M",univers,italic,10

text 56,23,"Unit\nPrice",univers,italic,10

text 70,23,"Extended\nPrice",univers,italic,10

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=69::20
text 58,58,"Sales Amt",univers,11

text 58,61,"Sales Tax",univers,11

text 58,62,"Freight”,univers,11

text 58,64.25,"TOTAL" ,univers,bold, 14

UnForm Version 7.0 196

SIMPLEZ2 - INVOICE RULE SET (SIMPLE.RUL)

This is a somewhat more advanced rule set than simplel, demonstrating how to add fonting,
justification, and text movement to the job. Additional notes are supplied to highlight these concepts.
To prevent simplel's detection code from selecting the job, add a —r option to the command line:

uf70c —i samplel.txt —f simple.rul —r simple2 —p pdf —o client:simple2.pdf

[simple2]

to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

#

This rule set takes the rule set above and improves it by adding

fonting and justification.

1t also cuts and pastes the invoice #/date/pg fields which allows

more room for company name and address to be centered

Also notice Tirst use of relative expression in a text command to Tix
a problem with fonting a series of rows. Put a # in front of this

command to see the problem that occurs. See memo section.

#

detect 61,5,"~../7../.. " # Invoice date and #
detect 9,11,"~...... ' # customer code

detect 10,21,"~../7../.. ' # ord date and cust code
cols 80 # max output columns
rows 66 # max output rows

The header section has changed to use center and right justification. Note the use of cols=79 in each
text command, which tells UnForm the bounds of the justification region. For example, the text
"Company Name" is centered in the region starting at column 1, for 79 columns.

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl"

text 1,2,"Company Name',univers,14,bold,center,cols=79

text 1,3,"Company Address\nCompany City, St Zipcode\nCompany

Phone" ,univers,12,bold,center,cols=79

text 1,6,"Web: www.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79
text 1,2,"INVOICE",univers,16,bold,right,cols=79

The Invoice number section is re-formatted here, by first drawing a new, vertically-oriented grid and
heading section, then by using text commands with expressions that use the cut() function. The
expression is indicated by the curly braces, such as {cut(61,5,8,"")}, which directs UnForm to resolve
the function as the job processes each page. In the line starting with "text 75,5", the data from the input
stream at column 61, row 5, for 8 characters is cut and replaced with nothing ("), and it becomes the
value printed at column 75, row 5.

UnForm Version 7.0 197

Further down, in the bill to/ship to section, is an example of the mcut() function, which cuts multiple
lines and replaces them with ™, retaining line breaks and trimming each line of leading and trailing
spaces.

iInvoice # section

cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20
text 68,5,'"Date" ,univers,italic,10

text 68,7,"Invoice" ,univers,italic,10

text 68,9,'"Page #'",univers,italic,10

cut data from old position and place in new
text 75,5,{cut(61,5,8,""")},cgtimes,bold, 10
text 75,7,{cut(71,5,7,""")},cgtimes,bold, 10
text 75,9,{cut(79,5,2,""")},cgtimes,bold, 10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20

text 2,12,"Sold To",cgtimes,italic,10,center,cols=5

cfont 8,11,40,11,cgtimes,bold, 10, left

cfont 8,12,40,15,cgtimes,bold, 10 # sold to address
text 45,12,"Ship To",cgtimes,italic,10,center,cols=5

cfont 51,11,80,11,cgtimes,bold,10, left

text 51,12,{mcut(51,12,30,4,"","Y","Y'")},cgtimes,bold, 10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"0rder\nNumber' ,univers,italic,10,center,cols=8
text 10,19, "0rder\nDate" ,univers,italic,10,center,cols=8
text 19,19, "Cust.\nNumber' ,univers,italic,10,center,cols=6
text 26,19,"SIs\nPrs" ,univers,italic,10,center,cols=3

text 30,19, "Purchase\nOrder No.',univers,italic,10,center,cols=12
text 43,19,'\nShip Via",univers,italic,10,center,cols=13
text 57,19,"Ship\nDate",univers,italic,10,center,cols=8
text 66,19,'"\nTerms" ,univers,italic,10,center,cols=14

This section changes the fonts of the input data stream in the invoice ribbon section. For example, the
first cfont command changes the data in column 1, row 21 through column 8, row 21, to cgtimes, bold,
10 point, centered text. Note how the font command applies to the incoming data stream, which differs
from the text command, which adds additional output to the job. Font commands therefore work with
integer positions, as they modify the character-base data stream as it passes through to the output.

order #
order date

cfont 1,21,8,21,cgtimes,bold,10,center #

cfont 10,21,17,21,cgtimes,bold,10,center #

cfont 19,21,24,21,cgtimes,bold,10,center # cust #

cfont 26,21,28,21,cgtimes,bold,10, left # sls prs code
cfont 26,22,64,22,cgtimes,bold,10, left # sls prs name
cfont 30,21,41,21,cgtimes,bold,10,center # po #

cfont 43,21,55,21,cgtimes,bold,10,center # ship via
cfont 57,21,64,21,cgtimes,bold,10,center # ship date
cfont 66,21,80,22,cgtimes,10,center # terms

detail section
cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4

UnForm Version 7.0 198

text 6,23,"Qty\nShip",univers,italic,10,right,cols=4

text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4

text 17,23,'\nltem & Description”,univers,italic,10

text 52,23,"\nU/M",univers,italic,10,center,cols=3

text 56,23,"Unit\nPrice" ,univers,italic,10,right,cols=11
text 68,23, "Extended\nPrice",univers,italic,10,right,cols=12

This section performs two distinct fonting functions. First, the detail item columns are fonted. Note that
you can't simply font the entire detail section in a proportional font, as the spacing between columns
would be lost. Instead, each column is fonted individually.

However, the data stream for the invoice also contains memo lines in the middle of the detail item lines,
and those memo lines should not be broken into individual columns.

Therefore, an additional font command is added after the column fonting, which will override any font
characteristics defined for any given data position in a prior font command. This memo section fonting
uses a technique that will scan the page for a pattern (in this example, 4 spaces in the region outlined by
column 1, row 25 through column 4, row 56), and change font characteristics relative to those locations
found. In this example, wherever the 4 spaces are found, fonting will occur 17 columns to the right, 0
rows down, for 60 columns and 1 row. These are the memo lines found in the midst of the item detail
lines.

cfont 1,25,4,56,cgtimes,10,bold,right
cfont 6,25,9,56,cgtimes,10,bold, right
cfont 11,25,15,56,cgtimes,10,bold,right
cfont 17,25,50,56,cgtimes, 10, left

cfont 52,25,54,56,cgtimes,10,bold,center
cfont 56,25,66,56,cgtimes,10,bold,right
cfont 68,25,79,56,cgtimes,10,bold,right

qty ord

qty shipped
qty b/o

item # & desc
u/m

unit price
extended

HHHFHIFHH

memo section
font ' @1,25,4,56",17,0,60,1,cgtimes, 10, left

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=67::20

text 58,58,"Sales Amt",univers,11

cfont 58,60,66,60,univers, 11, left

text 58,61,"Sales Tax",univers,11

text 58,62, Freight”,univers,11

text 58,64.25,"TOTAL" ,univers,bold, 14

cfont 68,58,79,65,cgtimes,bold,right,14 # totals

UnForm Version 7.0 199

SIMPLES3 - INVOICE RULE SET (SIMPLE.RUL)

This rule set adds copy handling, a watermark, and a barcode. To produce this sample, use this
command:

uf70c —i samplel.txt —f simple.rul —r simple3 —p pdf —o client:simple3.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple3]

to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

#

This rule set takes the rule set above and improves it by adding

copies, watermark, and a barcode.

dsn_sample "'samplel.txt"

detect 61,5,"~../../.. ' # Invoice date and #
detect 9,11,"~...... ' # customer code

detect 10,21,"~..7../7.. ' # ord date and cust code
cols 80 # max output columns
rows 66 # max output rows

This rule set produces two copies of each page, with each copy sequentially produced as each page is
read from the data stream. The pcopies command indicates this page-oriented copy production. There
is also a copies command, which produces job-oriented copies for laser jobs. Note that PDF output
always is produced as page-oriented copies, whether copies or pcopies is used.

When copies are produced, all rule set content that is not bracketed within *if copy' blocks is produced
on all copies. The majority of this rule set is outside of such blocks, so the majority will be applied to
both copies. Near the bottom of the rule set is some code that will apply distinctly to each copy.

copies
pcopies 2

header section

cbox .5,.5,80.5,66.5,5

image 1,1,12,6,"sdsilogo.pcl"

text 1,2,"Company Name',univers,14,bold,center,cols=79

text 1,3,"Company Address\nCompany City, St Zipcode\nCompany

Phone" ,univers,12,bold,center,cols=79

text 1,6,"Web: www_.myweb.com\nEmail: sales@myweb.com",univers,11,bold,center,cols=79
text 1,2,"INVOICE",univers,16,bold,right,cols=79

iInvoice # section

cbox 67,4,80.5,10,1,crows=6 8,ccols=74::20
text 68,5,"Date" ,univers,italic,10

text 68,7,"Invoice'" ,univers,italic,10

text 68,9,'"Page #',univers,italic,10

cut data from old position and place in new

UnForm Version 7.0 200

text 75,5,{cut(61,5,8,""")},cgtimes,bold, 10
text 75,7,{cut(71,5,7,""")},cgtimes,bold, 10
text 75,9,{cut(79,5,2,""")},cgtimes,bold, 10

bill to / ship to section

cbox .5,10,80.5,18.5,5,ccols=7::20 43.5 50::20

text 2,12,"Sold To",cgtimes,italic,10,center,cols=5

cfont 8,11,40,11,cgtimes,bold, 10, left

cfont 8,12,40,15,cgtimes,bold, 10 # sold to address
text 45,12,"Ship To",cgtimes,italic,10,center,cols=5

cfont 51,11,80,11,cgtimes,bold, 10, left

text 51,12,{mcut(51,12,30,4,"","Y","Y'")},cgtimes,bold, 10

ribbon section

cbox .5,18.5,80.5,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19,"0Order\nNumber' ,univers,italic,10,center,cols=8
text 10,19,"0rder\nDate" ,univers,italic,10,center,cols=8
text 19,19, "Cust.\nNumber' ,univers,italic,10,center,cols=6
text 26,19,"SIs\nPrs" ,univers,italic,10,center,cols=3

text 30,19, "Purchase\nOrder No.',univers,italic,10,center,cols=12
text 43,19,'\nShip Via",univers,italic,10,center,cols=13
text 57,19,"Ship\nDate",univers,italic,10,center,cols=8
text 66,19,'"\nTerms" ,univers,italic,10,center,cols=14

cfont 1,21,8,21,cgtimes,bold,10,center order #
cfont 10,21,17,21,cgtimes,bold,10,center order date
cfont 19,21,24,21,cgtimes,bold,10,center cust #

cfont 26,21,28,21,cgtimes,bold,10, left
cfont 26,22,64,22,cgtimes,bold,10, left

sls prs code
sls prs name

HHRHFEHHHFHFHHR

cfont 30,21,41,21,cgtimes,bold,10,center po #
cfont 43,21,55,21,cgtimes,bold,10,center ship via
cfont 57,21,64,21,cgtimes,bold,10,center ship date
cfont 66,21,80,22,cgtimes,10,center terms

detail section

cbox .5,22.5,80.5,56.5,5,crows=24.5::10,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd",univers,italic,10,right,cols=4

text 6,23,"Qty\nShip",univers,italic,10,right,cols=4

text 11,23,"Qty\nBkord",univers,10,italic,right,cols=4

text 17,23,"\nltem & Description”,univers,italic,10

text 52,23,"\nU/M",univers,italic,10,center,cols=3

text 56,23,"Unit\nPrice",univers,italic,10,right,cols=11

text 68,23,"Extended\nPrice",univers,italic,10,right,cols=12

cfont 1,25,4,56,cgtimes,10,bold,right # qty ord

cfont 6,25,9,56,cgtimes,10,bold,right # qty shipped
cfont 11,25,15,56,cgtimes,10,bold,right # qty b/o

cfont 17,25,50,56,cgtimes, 10, left # 1tem # & desc
cfont 52,25,54,56,cgtimes,10,bold,center # u/m

cfont 56,25,66,56,cgtimes,10,bold,right # unit price
cfont 68,25,79,56,cgtimes,10,bold,right # extended

memo section

font " @1,25,4,56",17,0,60,1,cgtimes, 10, left

UnForm Version 7.0 201

This text line adds a large text watermark on line 56, centered horizontally. The text is printed in
cgtimes, 120 point, with 10% shading applied.

watermark
text 1,56,"INVOICE",cgtimes,120,shade=10,center,cols=80,Ffit

footer section

cbox 57,57,80.5,65,crows=59 63,ccols=67::20

text 58,58,"Sales Amt",univers,11

cfont 58,60,66,60,univers,11, left

text 58,61,"Sales Tax",univers,11

text 58,62,"Freight”,univers,11

text 58,64.25,"TOTAL" ,univers,bold, 14

cfont 68,58,79,65,cgtimes,bold,right,14 # totals

The barcode command can be used to add barcodes in many symbologies. It is similar to other
commands, in that you provide a column, row, and value. In addition, you specify a symbology (400 is
Code 3 of 9), a point size or pixel height (14.0, being a decimal rather than integer value, is treated as
point size), and a bar spacing value in pixels. Like most commands, you can use expressions in the
value element of the command. In this example, the data stream data from column 9, row 11, for 6
characters is used on each page, using the get() function within an expression.

text 2,58,"Customer code as 3 of 9 barcode",univers,italic,10
barcode 2,58.67,{get(9,11,6)},400,14.0,4

The following lines produce different output for each of the two copies. Copy 1 is labeled with a text
command to say it is the "Customer Copy", while copy 2 is labeled as "Accounting Copy". Any
commands outside of 'if copy' blocks are applied to all copies.

copy name section
if copy 1

text 1,65.5,"Customer Copy',univers,12,bold,center,cols=80
end if
iT copy 2

text 1,65.5,"Accounting Copy',univers,12,bold,center,cols=80
end if

UnForm Version 7.0 202

SIMPLE4 - INVOICE RULE SET (SIMPLE.RUL)

This rule set demonstrates the use of constants, graphical shading, colors, and expressions to produce
explanatory notes in the document. To produce this sample, use this command:

uf70c —i samplel.txt —f simple.rul —r simple4 —p pdf —o client:simple4.pdf

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[simple4d]
to use this rule set, you need to FORCE the rule set with the -r option
or remark (#) out the detect command in the rule sets above.

This rule set takes the rule set above and improves it by adding
constants, graphical shading, increases the resolution,
and adds explanatory text commands for cust # and ship to #.

HHHFHHFHFHH

Also adds a copy for a packing slip with no prices.

dsn_sample "samplel.txt"

detect 61,5,"~../../.. ' # invoice date and #
detect 9,11,"~...... ' # customer code

detect 10,21,"~../../.. ' # ord date and cust code

Constants are simple text names that are replaced by values later in the rule set. They can be used to
simplify maintenance of the rule set, or to make it easier to read. In this example, a series of constants
is defined using the const command, and you will find the names referenced throughout the balance of
the rule set.

const MAXCOLS=80
const MAXRCOLS=79
const LEFTCOL=.5
const RIGHTCOL=80.5
const MAXROWS=66

max cols to output
MAXCOLS-1

use 1 if empty

use LEFTCOL for symmetry
max rows to output

HFHHFH T

cols MAXCOLS
rows MAXROWS

copies

const CUSTOMER_COPY=1
const FILE_COPY=2
const PACK_COPY=3
pcopies 3

The dpi setting applies to laser output only, and instructs the printer to produce output at 600 dpi,
providing a typically crisper, more professional look. In addition, the gs on command turns on
graphical shading mode, so that shade regions and shaded text are rendered as graphical data rather
than using pcl's internal, typically coarse, shade macros.

UnForm Version 7.0 203

dpi 600
gs on # turn on graphical shading

enhancement constants

const HSHADE=30

const ISHADE=20

const DSHADE=10

const HFONT=univers,11

const IFONT=univers,italic,10
const DFONT=cgtimes,10

const DBFONT=DFONT,bold

header section

cbox LEFTCOL, .5,RIGHTCOL,{MAXROWS+.5%},5

image 1,1,12,6,"sdsilogo.pcl™

text 1,2,"Company Name',HFONT,14,bold,center,cols=MAXRCOLS
text 1,3,"Company Address\nCompany City, St Zipcode\nCompany
Phone' ,HFONT,12,bold,center,cols=MAXRCOLS

text 1,6,"Web: www.myweb.com\nEmail:
sales@myweb.com" ,HFONT ,bold,center,cols=MAXRCOLS

text 1,2,"INVOICE" ,HFONT,16,bold, right,cols=MAXRCOLS

1Invoice # section

cbox 67,4,RIGHTCOL,10,1,crows=6 8,ccols=74::1SHADE
text 68,5,"Date", IFONT

text 68,7,"Invoice', IFONT

text 68,9,"Page #",IFONT

cut data from old position and place in new
text 75,5,{cut(61,5,8,"")},DBFONT

text 75,7,{cut(71,5,7,""")},DBFONT

text 75,9,{cut(79,5,2,""")},DBFONT

The cbox command shown here uses constants defined above, plus shows the use of color options, which
are supported by PDF and color laser output. In this example, the interior is colored in cyan, and the
lines are colored in blue. Alternately, RGB hex triplets (such as 800000 for dark red) can be specified
using the rgb, scolor rgb, or Icolor rgb options.

bill to / ship to section

cerase 1,11,MAXCOLS,11 # erase cust#,ship# used later in text commands

cbox LEFTCOL,11,RIGHTCOL,18.5,5,cyan,color=blue,ccols=7::1SHADE 43.5 50: : ISHADE
text 2,12,"Sold To", IFONT,center,cols=5

cfont 8,11,40,11,DBFONT, left

cfont 8,12,40,15,DBFONT # sold to address

This text command shows an example of how to use an expression to construct a message using a
combination of hard-coded text and information from the data stream. In this example, the phrase
"Your customer code is" is concatenated with the data at column 9, row 11, for 6 characters, on each
page, and the result is printed at column 9, row 18, using the specifications provided by the constant
IFONT, defined earlier in the rule set.

text 8,18,{"Your customer code is '"+get(9,11,6)+"_."}, IFONT
text 45,12,"Ship To", IFONT,center,cols=5

cfont 51,11,80,11,DBFONT, left
text 51,12,{mcut(51,12,30,4,""","Y","Y"")},DBFONT

UnForm Version 7.0 204

text 51,18,{"Your ship to code is "+get(55,11,6)+"."}, 1FONT

ribbon section

cbox LEFTCOL,18.5,RIGHTCOL,22.5,5, Icolor=blue,crows=20.5::1SHADE:cyan,ccols=9 18 25
65

special internal grid in ribbon box

cbox 29,18.5,65,21.5

cbox 42,18.5,56,21.5

text 1,19, "0Order\nNumber", IFONT,center,cols=8

text 10,19,"0rder\nDate", IFONT,center,cols=8

text 19,19, " Cust.\nNumber", IFONT,center,cols=6

text 26,19, "SIs\nPrs", IFONT,center,cols=3

text 30,19, "Purchase\nOrder No.'",IFONT,center,cols=12
text 43,19,'"\nShip Via", IFONT,center,cols=13

text 57,19,"Ship\nDate", IFONT,center,cols=8

text 66,19, \nTerms", IFONT,center,cols=14

cfont 1,21,8,21,DBFONT,center order #
cfont 10,21,17,21,DBFONT,center order date
cfont 19,21,24,21,DBFONT,center cust #

cfont 26,21,28,21,DBFONT, left
cfont 26,22,64,22,DBFONT, left

sls prs code
sls prs name

HHFHHFHFHEHHR

cfont 30,21,41,21,DBFONT,center po #
cfont 43,21,55,21,DBFONT,center ship via
cfont 57,21,64,21,DBFONT,center ship date
cfont 66,21,80,22,DBFONT,center terms

detail section
iT copy PACK_COPY
erase "~_.[0-9][0-9]@62,25,79,56",-6,0,11,1
endif
cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24_5::DSHADE,ccols=5 10 16 51 55 67
text 1,23,"Qty\nOrd", IFONT,right,cols=4
text 6,23,"Qty\nShip", IFONT,right,cols=4
text 11,23,"Qty\nBkord", IFONT,right,cols=4
text 17,23,'\nltem & Description", IFONT
text 52,23,"\nU/M", 1FONT,center,cols=3
text 56,23,"Unit\nPrice",1FONT,right,cols=11
text 68,23, "Extended\nPrice", IFONT,right,cols=12

cfont 1,25,4,56,DBFONT,right # qty ord

cfont 6,25,9,56,DBFONT,right # qty shipped
cfont 11,25,15,56,DBFONT, right # qty b/o

cfont 17,25,50,56,DFONT, left # item # & desc
cfont 52,25,54,56,DBFONT, center # u/m

cfont 56,25,66,56,DBFONT, right # unit price
cfont 68,25,79,56,DBFONT, right # extended

memo section

font " @1,25,4,56",17,0,60,1,DFONT, left

watermark
if copy CUSTOMER_COPY,FILE_COPY

text 1,56,"INVOICE",DFONT, 120, shade=DSHADE, center,cols=MAXCOLS, fit
endif
iT copy PACK_COPY

text 1,56,"PACK SLIP",DFONT,120,shade=DSHADE, center,cols=MAXCOLS, fit
endif

footer section

UnForm Version 7.0 205

cbox 57,57 ,RIGHTCOL,65, Icolor=red,crows=59 63,ccols=67::HSHADE
text 58,58, '"Sales Amt",HFONT

cfont 58,60,66,60,HFONT, left

text 58,61,"Sales Tax",HFONT

text 58,62,"Freight" ,HFONT

text 58,64 .25,"TOTAL" ,HFONT,bold, 14

cfont 68,58,79,65,DBFONT,right,14 # totals

text 2,58,"Customer code as 3 of 9 barcode™, IFONT
barcode 2,58.67,{get(9,11,6)},400,14.0,4

Note the use of constants to make this section easier to read.

copy name section
iT copy CUSTOMER_COPY

text 1,65.5,"Customer Copy',HFONT,12,bold,center,cols=MAXCOLS
end if
ifT copy FILE_COPY

text 1,65.5,"Accounting Copy',HFONT,12,bold,center,cols=MAXCOLS
end if
if copy PACK COPY

text 1,65.5,"Packing Slip",HFONT,12,bold,center,cols=MAXCOLS
end if

This text line demonstrates the use of multi-line text forced to fit within a certain number of columns.
UnForm scans each of the two lines (delimited by the \n character sequence, or it could contain data
with line-feed or carriage-return line-feed delimiters) to determine the width, beginning with the point
size 12 specified in the command. The size is reduced until both lines will fit within the 20 columns
specified with the cols option. Once the correct point size is determined, the lines are spaced normally
for that height. For example, if the size required is 8.25 points, then the lines will be spaced 8.25 points
apart. If spacing had been set to 1.5, then the lines would be spaced 12.33 points apart.

text 2,62,"This sample message text, which contains\nline breaks, 1is sized to fit
in 20 columns.",cols 20,cgtimes,12,fit,spacing 1

UnForm Version 7.0 206

INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL)

This sample is an invoice that is intended for a pre-printed form. The data generated by the application
doesn't include any headings or simulated line drawing like a plain-paper invoice might. In this case,
UnForm must simulate the entire pre-printed invoice form.

uf70c —i samplel.txt —f advanced.rul —p pdf -o client:invoice.pdf

\ A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[Invoice]

Detect statements are used to distinguish this form from any other report that the application might send
to the printer through UnForm. Unlike most form packages, UnForm doesn't dedicate a printer name to
a particular form (though it can be configured to do so). Instead, it reads the first page of data, then
compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that

e adate (mm/dd/yy format) followed by 2 spaces, followed by 7 more characters will appear at
column 61, row 5

e 6 characters will appear at column 9, row 11

e adate, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~. /.. /.. .. _..... " # 1Invoice date and #
detect 9,11, "~. " # customer code
detect 10,21,"~_._./../.. .- ' # ord date and cust code

The following lines define several constants that are used elsewhere in the rule set. Wherever the
constant names appear in a command, the value is substituted. Constants are not variables and are not
interpreted while the job is processed. They are simply literal placeholders used while UnForm reads
rule set lines.

set up document constants
const MAXCOLS=80

const MAXRCOLS=79

const LEFTCOL=.5

const RIGHTCOL=80.5

const MAXROWS=66

max cols to output
MAXCOLS-1

use 1 1T empty

use LEFTCOL for symmetry
max rows to output

HHEHHF

The following lines define the page size and orientation. The dpi command sets the printer to 600 dots
per inch. The rows and cols commands set the dimension for positioning and scaling. All positioning
will be based on 80 columns and 66 rows appearing within the printed margins of the page. The gs on

UnForm Version 7.0 207

command triggers the use of graphical shading, which improves the look of shade regions over the
native pcl shading of most laser printers, especially at higher dpi settings and shade percentages. In
addition, UnForm will generate two copies of the job, with each page producing two copies as
processed (collated).

portrait

dpi 600

gs on # graphical shading
cols MAXCOLS # max output columns
rows MAXROWS # max output rows

to print more copies, increase value and add copy titles in prejob
pcopies 2 # max # of copies

If this rule set is used to produce a PDF document, then the title of "Sample Invoice™ will be added to
the PDF file. For laser output, the title command is ignored.

title "Invoice Sample” # view In PDF properties

The prejob code block is executed once at the beginning of the job, after the first page of data has been
read and the rule set parsed. This example is simply setting a variable form_title$ to a literal value
INVOICE. This variable is used later in the rule set.

The prepage code block is executed once per page, just after UnForm has read the text for the page, but
before any copies of that page have been printed. Within a prepage code block, you can insert any valid
Business Basic code (though you need to be careful not to insert any UnForm commands.) This code
initializes a variable shipzip$ to null, then looks for a regular expression pattern of 5 digits on line 15.
If the pattern is found, it sets shipzip$ to the zip code. After the code block is closed, a barcode
command is used to place a postnet barcode below the shipping address. The barcode command uses
the syntax "{shipzip$}", indicating the expression shipzip$ should be used to generate the data to
barcode.

Once the prepage code block creates shipzip$, it then scans a range of rows looking for special memo
format lines. It marks these lines with the characters "mL" in the first two columns. Later in the rule
set, you'll see how these markers are used to treat memo lines differently than standard invoice lines.

The order of execution is controlled by UnForm. There is actually no need to place the barcode
command below the prepage code block, as UnForm will properly execute the code block before any
form commands are executed at run-time.

prejob {

set up variables needed by merged routines below
1T form title changes per page,
set up In prepage routine below

UnForm Version 7.0 208

form_title$="INVOICE"

}
prepage {
find zip code iIn city,state,zip line for bar code
shipzip$=""
regular expression of 5 digits on line 15
x=mask(text$[15], " [0-9][0-9][0-9]1[0-9]1[0-91"")
if x>0 then shipzip$=get(x,15,5)
mark memo lines for special handling in detail section below
memo start in column 28 with all spaces before
for 1=25 to 56
it len(text$[i])>27 and trim(text$[i](1,27))="" then \
text$[1](1,2)="mL"
next 1
¥

The pdf driver supports the ability to email the PDF file created using the email command. The
commented # email line below provides an example of the command. It requires four arguments, each
of which can be a literal string value or a string expression enclosed in braces. In order for the email
command to work, the mailcall.ini file must be properly configured for your system.

When run in PDF mode, and if mailcall.ini i1s configured properly,
and 1f the system can communicate with the mail server, then the
next line would send the PDF iInvoice as an attachment to an email.
email "'someone@somewhere.com™, " 'me@mycompany.com’™, \

{"A test invoice "+cvs(get(71,5,7),3)}, \

"Attached 1s a sample iInvoice\n"

HHITHHEHR

The next group of commands creates a page header with box and text commands. The box commands
are given as the cbox variant, which accepts two pairs of numbers as opposite corners of the box. Some
of the commands are stored in a different rule set, called "Mrg Form Header™. This rule set is also
located in the advanced.rul file. The lines in that rule set are merged in here as if they were part of this
rule set.

Note that some of the text commands, and also a barcode command, use an expression rather than a
literal. An expression is an executable value assignment enclosed in braces. For example, one text
command uses an expression {cut(61,5,8,"")},which cuts out the text at column 61, row 5, for 8
columns, returning the result, while setting those positions to ™. The result is printing at position 75,5
what was at position 61,5.

heading section

const HFONT=univers,12 # headings
cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "‘Mrg Form Header™ # merge std hdr rules

UnForm Version 7.0 209

right top ribbon
const HFONT=univers,11,italic # headings
const DFONT=cgtimes,11,bold # data

draw iInfo box with internal grid and shading
horizontal lines at 6 and 8

vertical line at 74 with shading between 67 and 74
cbox 67,4,RIGHTCOL,10,5,crows=6 8,ccols=74:-:20
text 68,5,"Date" ,HFONT

text 68,7, Invoice’ ,HFONT

text 68,9,"Page #",HFONT

cut data from old position and place in new
text 75,5,{cut(61,5,8,""")},DFONT

text 75,7,{cut(71,5,7,""")},DFONT

text 75,9,{cut(79,5,2,""")},DFONT

sold to section
cbox LEFTCOL,10,41,18.5,5
cbox LEFTCOL,10,41,11.25,0,10
text 8,10.75,"SOLD TO",HFONT,bold
cfont 8,12,40,15,DFONT # sold to address
if copy 1
barcode 8,16,{shipzip$},900,9.0,2
end 1f
text 2,18,{"Your customer code is "+cut(9,11,6,"")+"."},8,cgtimes

ship to section

cbox 41,10,RIGHTCOL,18.5,5

cbox 41,10,RIGHTCOL,11.25,0,10

text 48,10.75,"SHIP TO",HFONT,bold

cut ship to address and place In new position

text 48,12, {mcut(51,12,30,4,"","Y","Y"")},DFONT

text 43,18,{"Your ship to code is "+cut(b5,11,6,'"")+"."},8,cgtimes

This section draws order detail boxes and headings. The first cbox command draws a grid, using the
internal crows and ccols options. In addition to the boxes and headings, the font used for the data from
the input stream is changed using a series of cfont commands, one for each section.

ribbon section

const L1=19

const L2=20

draw info box with internal grid and shading

horizontal line at 20.5 with shading between 18.5 and 20.5

vertical lines at 9, 18, 25, and 65

cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box

cbox 29,18.5,65,21.5

UnForm Version 7.0 210

cbox 42,18.5,56,21.5

ribbon headings

text 1,L1,"Order" ,HFONT,right,cols=8
text 1,L2,"Number™ ,HFONT,right,cols=8
text 10,L1,"Order" ,HFONT,center,cols=8
text 10,L2,"Date" ,HFONT,center,cols=8
text 19,L1,"Cust." ,HFONT

text 19,L2,"'Number' ,HFONT

text 26,L1,"SIs" ,HFONT

text 26,L2,"Prs" ,HFONT

text 30,L1,"Purchase" ,HFONT

text 30,L2,"0Order No.",HFONT

text 43,L2,"Ship Via",HFONT

text 57,L1,"Ship",HFONT,center,cols=8
text 57,L2,"Date" ,HFONT,center,cols=8
text 66,L2,"Terms" ,HFONT

ribbon data

cfont 1,21,8,21,DFONT,right order #
cfont 10,21,17,21,DFONT,center order date
cfont 19,21,24,21 ,DFONT cust #

cfont 26,21,28,21,DFONT
cfont 26,22,64,22 ,DFONT

sls prs code
sls prs name

HHIFHFHFHFHHTHR

cfont 30,21,41,21,DFONT po #
cfont 43,21,55,21,DFONT ship via
cfont 57,21,64,21,DFONT,center ship date
cfont 66,21 ,MAXCOLS,22,DFONT terms

This section of lines controls the formatting of the invoice detail lines. A grid is drawn around the
column headers and detail lines. The column headers are shaded. Item detail lines are fonted using a
series of font commands that look for the pattern "~\.[0-9][0-9][0-9][0-9]" which is a period followed by
4 digits. Wherever that occurs, font changes are made relative to that position. Similarly, the memo
lines identified by the prepage code block and marked with the text marker "mL" are fonted with a
different column structure. In addition to the font command, an erase command is used to remove the
text markers.

detail section

detail headings

const L1=23

const L2=24

draw iInfo box with internal grid and shading

horizontal line at 24.5 with shading between 22.5 and 24.5

vertical lines at 5, 10, 16, 51, 55, and 67

cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::10, \
ccols=5 10 16 51 55 67

text 1,L1,"Qty",HFONT,right,cols=4

text 1,L2,"0rd",HFONT,right,cols=4

text 6,L1,"Qty" ,HFONT,right,cols=4

text 6,L2,"Ship"”,HFONT, right,cols=4

text 11,L1,"Qty",HFONT,right,cols=5

UnForm Version 7.0 211

text 11,L2,"Bkord” ,HFONT,right,cols=5

text 20,L2,"1tem & Description’ , HFONT

text 52,L2,"U/M",HFONT,center,cols=3

text 56,L1,"Unit",HFONT,right,cols=11

text 56,L2,"Price" ,HFONT,right,cols=11

text 68,L1,"Extended" ,HFONT,right,cols=12

text 68,L2,"Price"” ,HFONT,right,cols=12

detail data

Modify fonts for lines. As comments may be present in the same rows,
use a pattern to locate the .nnnn in the price column,

which indicates a part number line.

Use a prepage routine to find the comments and change their font.

font "~\.[0-9][0-9][0-9][0-9]",-61,0,4,1,DFONT,right # qty ord

font "~_[0-9][0-9][0-9][0-9]",-56,0,4,1,DFONT,right # qty shipped
font "~\.[0-9][0-9][0-9][0-9]",-50,0,4,1,DFONT,right # qty b/o

font "~_[0-9][0-9][0-9][0-9]",-42,0,30,2,DFONT # 1tem # & desc
font "~_[0-9][0-9][0-9][0-9]",-10,0,3,1,DFONT,center # u/m

font "~_[0-9][0-9][0-9][0-9]",-6,0,11,1,DFONT,right # unit price
font "~_[0-9][0-9][0-9][0-9]",6,0,12,1,DFONT,right # ext price

handle memo lines

inserted "mL" iIn prepage above
font "mL@1,25,2,56',10,0,63,1,HFONT
erase ''mL@1,25,2,56",0,0,2,1

Watermark text is placed in the middle of the detail lines. This text is centered between column 1 and
MAXCOLS, is rendered at 120 points, and is printed at 20% gray shading.

watermark - large font with light shading
text 1,52,{form_title$},cgtimes,120,shade 20,center,cols=MAXCOLS

The totals section is formatted like the other sections, with a grid, text headings, and font changes that
apply to the input stream text.

totals section

draw Info box with internal grid and shading

horizontal lines at 59 and 63

vertical line at 69 with shading between 58 and 69

cbox 58,57 ,RIGHTCOL,65,5,ccols=69::20,crows=59 63

text 59,58, "Sales Amt" ,HFONT

text 59,61,"Sales Tax",HFONT

text 59,62,"Freight ,HFONT

text 59,64.25,"TOTAL" ,HFONT ,bold, 14

cfont 59,60,68,60,HFONT # disc hdr
cfont 70,58,MAXRCOLS,65,DFONT,14,decimal # totals

These text lines simply demonstrate some of UnForm's paragraph features. The first text command
forces the longest line in the paragraph to fit within the number of defined columns. The maximum

UnForm Version 7.0 212

point size is 12, but that may be adjusted down to accommodate the longest line. Lines are delimited by
the \n character sequence, or by a CHR(10) within an expression. Line spacing is determined by the
final point size, and may be adjusted with the spacing option. For example, if the rendered size is 8
point, then the spacing of 1 will result in 9 lines per inch (9 x 8=72), while spacing of 1.5 would result
in 6 lines per inch (9/1.5=6).

The second example will force use the defined point size to render the text, but any lines wider than the
specified columns will be word-wrapped.

The third example shows how to use a specified ASCII value in a text command. The ASCII value 174,
when printed using the symbol set 9J, is a trademark symbol. This technique can be used to print Latin
characters and special symbols. The symbol set determines what any given character value prints as.
The 9J symbol set is the default. See the —testpr command line option for viewing printed tables of
different symbol sets.

footer section

These lines show fitting and wrapping of text

text 2,60,"This sample message text, which contains\nline breaks, \
is sized to fit in 20 columns.',cols 20,cgtimes,12, \
fit,spacing 1

text 28,60,"This sample message text is word wrapped to not exceed \
20 columns, while retaining the specified 12 point size.”,\
cgtimes,cols 20,12,wrap,spacing 1

text 2,64,"This sample was generated by UnForm<l174>.",7,cgtimes, \
symset 9J,blue

This set of commands places the phrase "Customer Copy™ on copy 1, and "Remittance Copy" on copy 2.
The text is placed at row 65.5, and is centered within the columns defined at column 1 and the constant
MAXCOLS, which represents the whole page width.

copy name section
const ROW=65.5
iT copy 1

text 1,ROW, " Customer Copy",HFONT,bold,center,cols=MAXCOLS
end iIf
if copy 2

text 1,ROW,"Accounting Copy',HFONT,bold,center,cols=MAXCOLS
end 1f

UnForm Version 7.0 213

STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB
(ADVANCED.RUL)

In this sample, a two-page, plain paper statement is printed. The two pages contain two slightly
different formats, with the second page containing detail lines and a customer aging, and the first page
containing some more detail lines and the phrase "CONTINUED" at the bottom. In the same statement
print run, some statements may contain a single page, others two or more pages.

The trick here is to get UnForm to produce two formats based on the content of each page. In order to
accomplish this, we define the job to produce multiple copies, and assign certain copies to certain
formats. Using a precopy{} code block, we can then control the printing of the different formats.

uf70c —i sample2.txt —f advanced.rul —p pdf —o client:statement.pdf

| This statement header identifies this rule set.

[Statement]

The word STATEMENT appears at column 34, row 2, and a date appears at column 65, row 7. To
further clarify, a date format is matched at position 65, 7.

detect 34,2,"STATEMENT"
detect 65,7, "~../7../7.." # statement date

The page dimensions are 66 rows and 75 columns. The text input to UnForm doesn't contain any form-
feeds to indicate the end of a page, so the command "page 66" tells UnForm to consider each 66 lines to
be a page.

Pcopies 4 is used to tell UnForm to print 4 copies of each page, with copies following each other in
sequence for each page (collated). You will find later that UnForm doesn't actually print all copies of
each page, but instead simply prints selected copies, depending on the format required. As each page is
processed, if the page contains aging totals, UnForm prints 2 copies of that format, and if it does not
contain aging totals, then UnForm prints 2 copies of the second format.

set up document constants
const MAXCOLS=75

const MAXRCOLS=74

const LEFTCOL=1

const RIGHTCOL=75

const MAXROWS=66

max cols to output
MAXCOLS-1

use 1 1T empty
MAXCOLS for symmetry
max rows to output

HFHHEHHF

portrait

UnForm Version 7.0 214

dpi 300

gs on # graphical shading

cols MAXCOLS # max output columns

rows MAXROWS # max output rows

page MAXROWS # no form-feeds used

to print more copies, increase value and add copy titles in prejob
Copy 1,2 Statement with aging totals

Copy 3,4 Statement w/o0 aging totals

pcopies 4 # max # of copies

If this rule set is used to produce a PDF document, then the title "Statement Sample" will be added to
the PDF file. For laser output, the title command is ignored.

title ""Statement Sample™ # view In PDF properties

The prejob command defines a string variable form_title$, assigning it the value "STATEMENT". This
variable is used later in the rule set for a page heading and also in a watermark.

prejob {
set up variables needed by merged routines below

1T form title changes per page,

set up In prepage routine below

form_title$=""STATEMENT"

The prepage code block performs 2 functions. It checks the input data for the word "CONTINUED" at
position 66, 64. If that word is present, then a variable continued$ is assigned to the phrase
"Continued"; otherwise it is set to null. In addition, at three individual lines (16, 62, and 64), there may
be single ! characters used as character-mode vertical lines in the input data. Elsewhere in the rule set
is a 'vline """, erase' command, which erases instances of 2 or more ! characters vertically on the page.
This code takes care of the single-row instances.

prepage {
get continued if it exists
continued$=get(66,64,9)
iT continued$=""CONTINUED" then continued$=""Continued" \
else continued$="""

remove single ! from line draw regions
x=pos(""!"'=text$[16]; \
while x>0; text$[16](x,1)=""",x=pos(""!"'=text$[16]) ;wend

x=pos("'1"=text$[62]; \
while x>0; text$[62](x,1)=""",x=pos(""I"'=text$[62]) ;wend

UnForm Version 7.0 215

x=pos(""I""=text$[64]; \
whille x>0; text$[64](x,1)=""",x=pos(""1"'=text$[64]) ;wend

The precopy code block is executed as each of the 4 copies are about to be printed. The logic here
indicates the copies 1 and 2 are for pages that do not contain the word "CONTINUED" (remember the
prepage code block?), and copies 3 and 4 do contain that word. By setting the variable skip to a non-
zero value, the copy being processed is skipped. Only 1 of the 2 formats is printed, depending on the
content of the page.

precopy {
ifT copy=1 or copy=2 then if continued$="Continued" then skip=1

if copy=3 or copy=4 then if continued$<>"Continued" then skip=1

The following lines remove most of the existing character-mode line drawing elements from the input
data. The hline and vline commands scan for places where at least the indicated number of characters,
horizontally or vertically, occur on the page. The erase option removes them rather than replacing
them with graphical lines.

#remove existing lines

hline "--"",erase
hline "==",erase
vliine "!!" erase
cerase 1,1,1,MAXROWS # erase all 1st column
cerase MAXCOLS,1,MAXCOLS,MAXROWS # erase all last column

The following lines draw the page headings. Some of the commands are stored in another rule set,
"Mrg Form Header", which is merged as the rule set is parsed. The headings already exist, and are
moved and fonted with text commands using expressions, such as {cut(66,5,4,"")}.

heading section

const HFONT=univers,12 # headings

cerase 1,1,MAXCOLS,10

cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "Mrg Form Header™ # merge std hdr rules
right top ribbon section

const HFONT=univers,11,italic # headings

const DFONT=cgtimes,11,bold # data

draw iInfo box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68

UnForm Version 7.0 216

cbox 63,5,MAXCOLS,9,5,crows=7,ccols=68::20

text 64,6,{cut(66,5,4,""")},HFONT # page #
text 64,8,{cut(59,7,4,""")},HFONT # date
text 69,6,{trim(cut(71,5,3,""))},DFONT # page #
text 69,8,{trim(cut(65,7,8,""))},DFONT # date

customer section

draw info box with internal grid and shading

vertical line at 10 with shading between 1 and 10
cbox LEFTCOL,10,MAXCOLS,15,5,ccols=10::10

text 2,11,{cut(2,10,2,""")},HFONT # to
text 4,13,{trim(cut(15,10,10,"""))},DFONT # cust code
cfont 12,11,MAXCOLS,14,DFONT # address

The detail section contains several columns of information. There are fewer detail lines on pages with
the aging data, so the grid drawing is made specific to particular formats with "if copy 1,2" and "if copy
3,4" sections. Then two groups of font changes are used, first for the column headings and then for the
data columns.

detail section
detail headings
draw info box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68
if copy 1,2
cbox LEFTCOL,15,MAXCOLS,56,5,crows=17::20, \
ccols=10 18 27 39 48 60 63
end if
if copy 3,4
cbox LEFTCOL,15,MAXCOLS,61,5,crows=17::20, \
ccols=10 18 27 39 48 60 63

end 1f

const ROW=16

cfont 2,ROW,9,ROW,HFONT,center # date
cfont 11,ROW,17,ROW,HFONT # inv #
cfont 19,ROW,26,ROW,HFONT,center # due date
cfont 28,ROW,38,ROW,HFONT,right # due amt
cfont 40,R0OW,47,ROW,HFONT,center # pmt date
cfont 49,ROW,59,ROW,HFONT, right # pmt amt
cfont 61,ROW,62,ROW,HFONT,center # type
cfont 64,ROW,MAXRCOLS,ROW,HFONT,right # balance
detail data

const DFONT=cgtimes, 11 # data
cfont 2,18,9,60,DFONT,center # date
cfont 11,18,17,60,DFONT # inv #
cfont 19,18,26,60,DFONT,center # due date
cfont 28,18,38,60,DFONT,right # due amt
cfont 40,18,47,60,DFONT,center # pmt date

UnForm Version 7.0 217

cfont 49,18,59,60,DFONT,right # pmt amt
cfont 61,18,62,60,DFONT,center # type
cfont 64,18,MAXRCOLS,60,DFONT,right,BOLD # balance

A watermark prints the form title as large, lightly shaded text. Its position depends upon the format,
hence the use of if copy blocks.

watermark - large font with light shading and rotation
if copy 1,2
text 39,56,{form_title$},cgtimes,75,shade 20,center, \
cols=MAXCOLS, rotate 90
end 1f
if copy 3,4
text 44,61,{form_title$},cgtimes,85,shade 20,center, \
cols=MAXCOLS, rotate 90
end 1f

The footer section differs considerably between the two formats. Copies 1 and 2 are associated with
pages that have aging data, so you see the fonting of the aging columns defined there. Copies 3 and 4
are printed when the word "CONTINUED" appears, and that word is printed below, though as the value
stored in continued$ ("Continued").

footer section
remarks
if copy 1,2
cbox LEFTCOL,56,RIGHTCOL,61,5
cfont 2,57 ,MAXRCOLS,60,HFONT
endif
totals
const DFONT=cgtimes,11,bold # data
if copy 1,2
cbox LEFTCOL,61,RIGHTCOL,64.5,5,crows=63::20, \
CCOLS=14 26 38 50 62
const ROW=62

cfont 1,ROW,13,ROW,HFONT, right # current
cfont 15,ROW,25,ROW,HFONT, right # 1-15
cfont 27,ROW,37,ROW,HFONT, right # 16-30
cfont 39,ROW,49,ROW,HFONT, right # 31-45
cfont 51,ROW,61,ROW,HFONT,right # over 45
cfont 63,ROW,MAXRCOLS,ROW,HFONT,right,bold,12 # total due
const ROW=64

cfont 1,ROW,13,ROW,DFONT,right # current
cfont 15,ROW,25,ROW,DFONT,right # 1-15
cfont 27,ROW,37,ROW,DFONT, right # 16-30
cfont 39,ROW,49,ROW,DFONT, right # 31-45
cfont 51,ROW,61,ROW,DFONT, right # over 45
cfont 63,ROW,MAXRCOLS,ROW,DFONT,right,bold,12 # total due

UnForm Version 7.0 218

endif

if copy 3,4

cerase 1,62,MAXCOLS, 66

text 1,65,{Continued$},HFONT,right,cols=MAXRCOLS
endif

Finally, within the two formats are two physical copies. Each of these copies is either for the customer
to keep or for the customer to return with their payment. Copy 1, the first page of format 1, and copy 3,
the first page of format 2, get the "Customer Copy" footer. The others get the "Remittance Copy" footer.

copy name section
const ROW=65.5
if copy 1,3

text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS
end 1f
if copy 2,4

text 1,ROW,"Remittance Copy',HFONT,bold,center,cols=MAXCOLS
end i1f

UnForm Version 7.0 219

AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)

In this third example, an aging report is enhanced to be more readable. This shows the use of relative
enhancements, which are those applied relative to the occurrence of text or regular expressions
anywhere on the page.

uf70c —i sample3.txt —f advanced.rul —p pdf —o client:aging.pdf

\ This statement header identifies this rule set.

[AgingReport]

\ The only detect statement required is this one, looking for the report title at column 50, row 2.

detect 50,2,"Detail Aging Report"

These constants are used throughout the rule set.

set up document constants
const MAXCOLS=131

const MAXRCOLS=130

const LEFTCOL=.5

const RIGHTCOL=131.5

const MAXROWS=66

max cols to output
MAXCOLS-1

use 1 1T empty
LEFTCOL for symmetry
max rows to output

HHHFEHHF

This report should print in landscape orientation, rather than the default portrait. UnForm will scale
the columns and rows to 131 by 66.

landscape

dpi 1200

gs on # graphical shading
cols MAXCOLS # max output cols
rows MAXROWS # max output rows
pcopies 1 # max # of copies

\ The title "Aging Sample" will appear in PDF document properties. It is ignored for laser output.

title "Aging Sample” # view In PDF properties

UnForm Version 7.0 220

The following prejob code demonstrates the use of sdOffice ™to mine data from this report and export it
to Microsoft Excel ®. SdOffice can be running anywhere on your network on a system with Excel. The
code relies on your setting two variables correctly. First, the sdo$ variable should be set to the path to
the sdOffice client program sdofc_e.bb. In addition, the value of gbl("$sdhost") needs to be set to the
address or hostname of the system running sdOffice. An optional way of doing this is to define an
environment variable prior to running UnForm, called SDHOST. If you use that alternative, then
comment out the x$=gbl("$sdhost™) line.

The code here contains enough error handling to ignore the code if sdOffice isn't present or fails to
execute.

prejob {
set up sdOffice export to Excel
set to path to your sdoffice *.pv programs
sdo$=""/u0/sdofc/sdofc_e.pv"

You can set the environment variable SDHOST, or use this
stbl function to define the sdOffice server address
x$=gbl (""$sdhost",""bcj"™)

initialize excel

call sdo$,err=prejob_done,"newbook","",errmsg$

if errmsg$>"" then goto prejob_done

sdofc_init=1

call sdo$,"show™,""",""

call sdo$,"setdelim |, ,"""

call sdo$,"writerow ID|Name|Phone]Over 60|Total, """, """

call sdo$,"format row=1,font=Arial,size=12,bold",""",""
prejob_done:

}

The prepage code block starts with code that exports data to Excel, but only if the prejob code block
successfully initializes the sdOffice connection. In addition to that code, it also sets two numeric
variables, colw and scol, based upon positions and widths of report column headers. These values are
used later in the rule set for fonting and line drawing.

prepage{
1T prejob hasn"t initialized sdoffice, skip this code
if sdofc_init<>1 then goto sdofc_complete

for row=1 to 66
In$=text$[row]

customer heading row contain phone numbers
x=mask(In$,"\(-..-...-...-\)")

UnForm Version 7.0 221

while x

wend

custid$=mid(In$,1,6)
custname$=trim(mid(In$,8,30))
custphone$=trim(mid(In$,38,14))
x=0

totals - 50 plus spaces followed by digit-.-digit-digit
x=mask(In$, " '+Fil1(50)+" . *[0-9]\.[0-9][0-91")
while X

wend

next row

sdofc_complete:

amount60=cnum(mid(In$,87,11))
amount90=cnum(mid(In$,98,11))
amount120=cnum(mid(In$,109,11))
over60=amount60+amount90+amount120
total=cnum(mid(In$,120,11))

export$=custid$+"|""+custname$+"|""+custphone$+"|""
export$=export$+str(over60)+"|"+str(total)

call sdo$,"writerow "+export$,™",
x=0

Now for some tricky code.

Agings can have different headings and column widths
To use version 5 features allowing variable columns and rows,
the following code will calculate starting positions

and column widths. It assumes a consistency iIn column widths
1 char negative, and 1 blank space between each column
hd1$=text$[7] # temp heading line with agings
x=pos("'Type''=hd1l$)

xhd1$=trim(hd1$(x+4))

remove all except agings

x=pos ("' "=xhd1%$)

x$=xhd1$(1,x-1)

get first column header

#

#

xhd1$=trim(xhd1$(x))

X=pos(x$=hd1$) # find true position
#

x1=x+len(x$)-1

get end of first column

now find end of 2nd column
x=pos("" "=xhd1$)

x$=xhd1$(1,x-1) # get second column header
x=pos(x$=hd1$)
x2=x+len(x$)-1 # get end of second column

now calculate mask width less space between columns
colw=x2-x1-1

now calculate start of first field

scol=x1-colw+2

UnForm Version 7.0

222

The postjob code block performs some closing formatting control if the job is exporting data to Excel. If
sdOffice is not being used, based upon the attempt to initialize it in the prejob code block, then this code
is skipped.

postjob{
1T prejob hasn"t initialized sdoffice, skip this code
iT sdofc_init<>1 then goto sdofc_complete2

call sdo$,"leaveopen, ", """
call sdo$,"format autofit', ', """
call sdo$,"format col=1,numberformat=@",""",""

call sdo$,"format col=4,numberformat=""###,##0.00"""" """ """
call sdo$,"format col=5,numberformat="""###,##0.00"""", bold" e e

call sdo$,"insertrow 1',"", """
call sdo$,"mergecells range=A1:E1","", """
call sdo$,"writecell range=Al,value="+$22%+ \
"Over 60 Aging Values as of "+date(0)+$22%,"",""
call sdo$,"format range=Al:E1l,center,size=15,bold","" """
sdofc_complete2:

}

Here, finally, are the commands to enhance the formatting of the report. The initial commands use text
commands with cut expressions to move the report header data around and change the fonting.

heading section

const BLFONT=univers,10,bold,i1talic

const BSFONT=univers,9,bold,italic

cbox .5,.5,RIGHTCOL,5,5,30

line 1

text 2,1.25,{trim(cut(1,1,10,""))},BSFONT # date

text 1,1.25,{trim(cut(20,1,100,""*))},BLFONT,center, \
cols=MAXRCOLS # comp name

text 1,1.25,{trim(cut(121,1,15,""))},BSFONT,right, \
cols=MAXRCOLS # page #

line 2

text 2,2.35,{trim(cut(1,2,10,'"""))},BSFONT # time

text 1,2.35,{trim(cut(20,2,100,"""))},BLFONT,center, \
cols=MAXRCOLS # rpt title

line 3

text 1,3.45,{trim(cut(20,3,100,"""))},BSFONT,center, \
cols=MAXRCOLS # sub heading

line 4

text 1,4.45,{trim(cut(20,4,100,"""))},BSFONT,center, \
cols=MAXRCOLS # sub heading

UnForm Version 7.0 223

This section formats the column headings. The left portion is drawn with text commands, while the
aging columns are fonted with font commands, which use the positions from the values calculated in the
prepage code block.

detail heading section

const HFONT=univers,10,italic

cbox LEFTCOL,5.25,RIGHTCOL,7.5,1,20

line 1

cerase 1,6,MAXCOLS,6

text 1,6,"Customer # & Name' ,HFONT

text 38,6,""Phone #',HFONT,center,cols=14
text 54,6, Contact" ,HFONT

line 2

cerase 1,7,49,7

text 3,7,"Invoice #",HFONT

text 12,7,"Due Date' ,HFONT,center,cols=8

text 21,7,"P/0 #",HFONT

text 32,7,"Order #",HFONT

text 39,7,"Terms",HFONT,center,cols=5

text 45,7,"Type" ,HFONT,center,cols=4

using variables from prepage, enhance aging headings
font {scol},7,{colw-1},1,HFONT,right

font {scol+1*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+2*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+3*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+4*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+5*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+6*(colw+1)},7,{colw},1,HFONT,right,bold

The report body is enhanced using UnForm's ability to scan for patterns and anchor enhancements to
those patterns. The first series of font commands scan for two spaces in the region from column 1, row
9 through column 2, row 66 (defined as the constant MAXROWS above). At each point in that search
region, if the two spaces are found, a font command is issued relative to the location. This changes the
font of the input data at that location.

The second series of font commands looks for customer heading line types, by searching for any alpha
or digit character in the region 1,9 though 2,66. A different set of font commands is then issued for
those positions.

detail data section

const BDFONT=cgtimes,10,bold

const DFONT=cgtimes, 10

1nvoice line

font * @1,9,2,MAXROWS™,2,0,8,1,DFONT

font " @1,9,2,MAXROWS™,11,0,8,1,DFONT,center
font ™ ©@1,9,2,MAXROWS™,20,0,10,1,DFONT

UnForm Version 7.0 224

font ™ ©@1,9,2,MAXROWS",31,0,7,1,DFONT

font " @1,9,2,MAXROWS™,38,0,5,1,DFONT,center

font " ©@1,9,2,MAXROWS™,44,0,4,1,DFONT,center

usung varlables from prepage, enhance agings

font " ©@1,9,2,MAXROWS",{scol},0,{colw},1,DFONT,decimal

font " ©@1,9,2,MAXROWS",{scol+1*(colw+1)},0,{colw},1,DFONT,decimal
font ™' @1,9,2,MAXROWS",{scol+2*(colw+1)},O,{colw},1,DFONT,decimaI
font " ©@1,9,2,MAXROWS™,{scol+3*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+4*(colw+1)},0,{colw},1,DFONT,decimal
font " ©@1,9,2,MAXROWS",{scol+5*(colw+1)},0,{colw},1,DFONT,decimal
font " ©@1,9,2,MAXROWS™",{scol+6*(colw+1)},0,{colw+1},1,BDFONT,decimal

cust line

font "~[A-Z0-9]0@1,9,2,MAXROWS",0,0,6,1,BDFONT

font "~[A-Z0-9]0@1,9,2,MAXROWS™",7,0,28,1,BDFONT

font "~[A-Z0-9]0@1,9,2,MAXROWS",37,0,14,1,BDFONT,center
font "~[A-Z0-9]0@1,9,2,MAXROWS"™,53,0,36,1,BDFONT

shade ""~[A-Z0-9]@1,9,2,MAXROWS",0,-.15,{RIGHTCOL-1.5},1,20

The following commands look for sequences of dashes, which indicate sub total lines. Wherever a
sequence of 50 dashes occurs, a box is drawn and input data is bolded. In addition, the original dashes
are removed with the hline command.

customer totals

hline "---"",erase

example of UnForm command with continuation to next line

box "----——————_———_—_——_—_—_—_———————— — ———— — —— — —— — ", \
-1,.25,{RIGHTCOL-53},1.25

bold "—--—=——— ",0,1,120,1

Finally, grand total lines are treated with special fonting and a box.

grand totals

const DFONT=cgtimes,11,bold

sample of box command with increased thickness and double lines
box "Grand Total:",-9.5,-1.25,MAXRCOLS,2.25,5,30,dbl 9

font "Grand Total:'",0,0,12,1,BDFONT,13

font "Grand Total:",{scol-10},0,{colw},1,DFONT,decimal

font "Grand Total:",{scol-10+1*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+2*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+3*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+4*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+5*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+6*(colw+1)},0,{colw+1},1,DFONT,decimal

UnForm Version 7.0 225

LABELS - TEXT LABELS TO LASER LABELS (ADVANCED.RUL)

UnForm is capable reading rows of input, parsing those rows into logical pages, and reproducing the
output with different dimensions. A typical situation that can take advantage of this is if your
application is designed to print mailing labels on continuous label stock on dot matrix printers. The
labels can be 1-up, 2-up, or any other dimensions. As long as each label has a consistent number of
rows and columns, UnForm can parse each label and treat each label as a logical page with the across
and down commands. To use this sample, you must add "-r labels" to the command line.

uf70c —i sample4.txt —f advanced.rul —r labels —p pdf —o client:labels.pdf

\ This statement header identifies the rule set. The name is used in the —r command line option.

[1abels]

Each label "page" is 35 columns and 6 rows of input text. If each line is 106 to 140 characters wide,
then four labels are parsed from the columns. When the output is produced, each label will be 30
columns by 6 rows. The labels will be arranged 3 rows across and 10 down the page. UnForm will
actually print 3x30=90 columns and 10x6=60 rows on each physical page.

Most laser label stock has ¥ inch top and bottom margins. The margin command adds 75 dots (¥4 inch)
to the standard UnForm top and bottom margins, which default to % inch.

In this sample, the text of the labels is printed from lines 1 to 4. By using the vshift 1 command,
UnForm will move the text to lines 2 through 5. The shift command moves the text to the right.

page 35,6

rows 6

cols 30

across 3

down 10

font 1,1,40,6,cgtimes,12
margin 0,0,75,75

vshift 1

shift 2

manual feed tray is usually 2
tray 2

The barcode command supports both 5 and 9-digit formats of the postnet barcode. To get either to
print, the prepage code block sets one or the other variable (zip$ or zip9$), and both commands are
issued. A null value is not barcoded. The prepage code extracts the zip code from line 3 or 4 of the
label. It then determines the length and sets zip$ or zip9$ appropriately.

UnForm Version 7.0 226

barcode 2,6,{zip$},900,11.0,2
barcode 2,6,{zip9%},905,11.0,2

prepage{
get zip code from line 3 or 4
zip$=""",zip9%="",zipline$=""

if trim(text$[4])>"" then zipline$=trim(text$[4])
iT zipline$="" then if trim(text$[3])>"" then zipline$=trim(text$[3])
while zipline$>""
x=mask(zipline$,"[0-9][0-9][0-9][0-9]1[0-91")
ifT x>0 zip$=zipline$(x)
zipline$=""
wend
remove possible hyphen and validate length
x=pos(*'-"=zip$); if x=6 then zip$=zip$(1,5)+zip$(7)
if len(zip$)<>5 and len(zip$)<>9 then zip$=""
if len(zip$)=9 then zip9%$=zip$,zips="""

}

UnForm Version 7.0 227

132X4 — MULTI-UP, SCALED REPORTING (ADVANCED.RUL)

This sample rule set will work with any 132 column by 66 row report. To use it, you must add "-r
132x4" to the command line. The report uses the across and down commands to scale the report to print
four logical pages to a physical page.

uf70c —i sample3.txt —f advanced.rul —r 132x4 —p pdf —o client:132x4.pdf

| The rule set header identifies the name.

[132x4]

The page dimensions are defined as 132 columns by 66 rows. UnForm will scale each page to fit 2
across and 2 down on a physical page (264 columns and 132 rows). The report is printed in landscape
orientation. A box is drawn around each page, and the hline command will convert all occurrences of 3
or more dashes to horizontal lines.

cols 132

rows 66

across 2

down 2

landscape

cbox .5,.5,132.5,66.5
hline "---""

UnForm Version 7.0 228

ZEBRA LABEL - ZEBRA® LABEL PRINTER EXAMPLE (ADVANCED.RUL)

UnForm offers an optional Zebra printer driver, which produces ZPLII code. Within the limits of the
ZPL language, UnForm produces enhanced forms for Zebra printers in much the same way it does for
laser printers. Some key differences are: fonts are identified differently and are limited in scalability,
shading is either 100% (black) or 0% (white), and the barcode command is more extensive and capable
than the laser printer barcode command.

When executing a Zebra run, it is critical to tell UnForm how large the labels are. This is done with a
special syntax on the "-page" command line option. Also, UnForm needs to know what print density is
used by the printer. This is determined by the "-p zebran" option, where n is either 6, 8, or 12 dots per
millimeter. You may need to adjust this sample command line to match your Zebra printer, as it
assumes an 8 dpmm printer and 3.25 by 5.5 inch label stock.

uf70c —i samplez.txt —f advanced.rul —p zebra8 —paper 3.25x5.5 —0 zebra-device

\ This label is scaled to 40 columns and 35 rows.

[zebra label]

detect 0,1,"Zebra Barcode"
cols 40

rows 35

The prepage code block gets the PO number, setting it into a variable po$, and removing the PO
number from the text with a set() function.

prepage{

pog=""
po$=cvs(get(2,16,10),3)
trash$=set(2,16,10,""")

}

The From and To sections draw boxes, change fonts, and re-allocate the lines of text from row 10 to row
14 with a series of text commands followed by an erase command.

From section

box 1,1,39,8,3

text 2,2,"From:",font A
font 2,3,35,6,font 0,9

To section

box 1,9.75,39,10.5,5

#text 2,10.6,"To:",font O

text 3,11,{get(2,11,30)},font 0,12

UnForm Version 7.0 229

text 3,12.25,{get(2,12,30)},font 0,12
text 3,13.5,{get(2,13,30)},font 0,12
text 3,14.75,{get(2,14,30)},font 0,12
text 3,16,{get(2,15,10)},font 0,12
erase 2,11,30,5

This group of commands prints three different barcodes on the label. First, a postnet code is printed
from the zip code located at column 2, row 15, for up to 10 characters. Then a UPS maxicode barcode
is printed with SDSI's address. Last, a "3 of 9" barcode is printed using the variable po$, derived in the
prepage{} code block above.

bar codes
barcode 10,18.25,{trim(get(2,15,10))},Z,33

text 2,24,"Maxicode™,font 0,10
barcode 2,25,{''999840956820000" + $0a$ + "'SDSI'+ $0a$ + '2195 Talon
Drive"™ + $0a$ + "Latrobe, CA 95682"}%,D

box 17,25,22,12,3

text 18,25.75,"0ur PO No (in code 39):",font A,21
barcode 20,28,{po%$},3,120,2,text above

UnForm Version 7.0 230

PDF OUTLINE SAMPLE (ADVANCED.RUL)

UnForm supports PDF outlines (or bookmarks) when using the pdf driver. Outlines can be multiple
levels, and each outline tree can be different levels deep. UnForm assumes each outline branch points to
a page. To control the text shown in the outline, you set the variable outline$ in a prepage or precopy
code block. This variable is parsed as each page is printed. Multi-level entries are created by delimiting
the text of the levels with a vertical bar (|) within the contents of the variable.

The file sample5.txt contains the contents of a 14-page report featuring two sort and subtotal levels, as
well as grand totals and a recap page. The outline tree for this report will be based on the salesperson
(outer sort) and class code (inner sort), along with specific page entries for the report total and recap
page. As there are no detect statements, you need to specify the —r option on the command line, as
shown.

uf70c —i sample5.txt —f advanced.rul —r outline —p pdf —o client:outline.pdf

[outline]

Set the page dimensions and turn on the outline feature with the outline keyword. The default outline
title for each page is simply "Page n", but a code block can override the outline text by setting the
variable outline$.

cols 132
rows 66
outline

The prepage code block looks on each page for the following cases, in order:

e A 3-digit salesperson number at the first column on line 7

e A salesperson subtotal heading on line 8

e Areport total heading on line 8

e A recap page heading on line 2

For the first two types of pages, a two level outline entry is created (level 1|level 2 structure). For the
report total and recap pages, a single level outline entry is created.

prepage{
default outline setting matches prior page
outline$=lastoutline$

1f line 7 starts with 3 digits, set 2-level outline slsp+class
if mask(get(1,7,3),"[0-9][0-9][0-9]"") then \
outline$="Slsp "+get(1,7,3)+"|Class "+get(13,7,2)

1f line 8 contains this, it is a salesperson subtotal

if pos("'SALESPERSON: "=text$[8])>0 then \
outline$="Slsp "+get(14,8,3)+"|Totals"

UnForm Version 7.0 231

1f line 8 contains this, it is a report title
iT pos("*Report' =text$[8])>0 then \
outline$="Report Total"

1f line 2 contains this, it is the recap page
ifT pos(""RECAP PAGE"=text$[2])>0 then \
outline$="Recap Page"

lastoutline$=outline$

}

UnForm Version 7.0 232

PROGRAMMING CODE BLOCKS

The prejob, predevice, prepage, and precopy subroutines (and their associated postxxx routines) open the
world of Business Basic programming to the report and form designs. With a full programming
language at your disposal, it is possible to customize and manipulate the forms, and to interact with
other applications and devices, or with the operating system.

An experienced BBx or ProvideX programmer (ProvideX is the actual dialect used, with lexical
compatibility added for most BBx syntax) typically performs the programming of these subroutines.
However, programmers experienced in other languages, particularly other dialects of Basic, can easily
learn the fundamentals of Business Basic and perform these programming tasks. Several of the sample
forms include some programming, and there is a complete reference guide available from the ProvideX
web site: www.pvx.com. In this manual, we have provided some basic (no pun intended) information
that will assist developers experienced in other programming environments.

UnForm Version 7.0 233

BASIC SYNTAX

Statements

A statement consists of a single verb and any arguments or parameters suitable for that verb. Multiple
statements can be placed on a single line by separating them with a semicolon (;). Statements can be
preceded by a label, which consists of a label name followed by a colon. Label names must follow the
same naming conventions as numeric variables.

Variables

There are two types of variables in Business Basic: string and numeric. Variables that end in a "$"
character are treated as string variables. They can hold any amount of text data, limited only by system
memory. Numeric variables can contain any number or integer. UnForm sets precision to 10, so that up
to 10 digits to the right of the decimal are maintained accurately.

Variable names can be up to 31 letters, digits, and underscore characters, and must start with a letter.
Variables can’t start with “fn” and should not start with “uf”.

work$, account01$, and cust_name$ are valid string variables.
cust-name$ is invalid.
amount, period_12, and six are valid numeric variables.

Arrays can be defined for both string and numeric variables. Arrays must be defined to a fixed number
of elements with a DIM statement, and array elements can then be referenced as variables. Arrays can
contain up to three dimensions.

dim amount[12] defines a 13-element array, a[0] ... a[12].
dim x$[1:6,1:20] defines a 2-dimensional string array. The first dimension ranges from 1 to 6, the
second from 1 to 20. x$[2,20] would be a valid element in this array.

The dim statement can also be used to initialize strings to a specified length. Dim a$(12), for example,
will set a$ to 12 spaces.

There are special string constructs available in ProvideX. These are called string templates or
composite strings. Details about these constructs can be found in the language manual for ProvideX,
available from www.pvx.com.

Functions

Many functions are available in Business Basic. Most will be familiar to a Basic programmer.
Functions consist of a word, an opening parenthesis, one or more arguments, and a closing parenthesis.
The function returns a string or numeric result, which is typically used as part of an expression, or in an
assignment. Wherever a string or numeric value can be used, a string or numeric function can be used.
In addition to internal Business Basic functions, UnForm also provides some functions that perform
tasks typical to print stream environment in which it runs.

UnForm Version 7.0 234

String and numeric representation

Strings are made up of concatenated bytes. They can be represented as literals inside double quotes,
such as "Name:", or as hexadecimal strings inside "$" delimiters, such as $1B45$ for Escape-E. They
can also be made up of combinations of literals, hex strings, string variables, and functions that return
string values. These values are combined using the "+" operator to concatenate each string together.
For example, a string containing quotes could be constructed one of these ways: chr(34)+"some
text"+chr(34); or $22%+"some text"+$22$, or quote$+"some text"+quote$. Since chr(34) and 22 both
represent a quote character, and it would be possible for the variable quote$ to contain the same, all
these expressions can represent the same string.

Substrings can be derived from a string variable with the syntax stringvar(start [,length]). For example,
if account$ is "01-567", then account$(4,3) would return the value "567". Substrings references with
positions that aren't in the string result in errors, so care must be used. To avoid the possible errors, the
mid() function can be used.

Numbers can be represented as integers or decimal numbers, or, like strings, can be represented as
expressions containing literal numbers, numeric variables, and numeric functions. With numbers, there
are more operators available to produce the expressions. A literal number is just a series of digits, with
an optional decimal point and an optional leading minus sign. 1995.99 and -100.433 are valid numbers.
Other punctuation, such as thousands separators or currency symbols, are invalid in a number though
they can be added when a number is formatted as a string for output.

Operators
Business Basic has the following standard operators:

+ concatenate strings or add numbers, depending on context
- subtraction

* multiplication

/ division

A exponentiation

= testing for equality, or assignment, depending on context
> testing for greater than

>= testing for greater than or equal to

< testing for less than

<= testing for less than or equal to

<> testing for inequality

0 controlling precedence

and combining expressions with logical "and" in conditions
or combining expressions with "or" in conditions

If Then Else
The structure of IF...THEN...ELSE statements is simple and unblocked. The IF must be followed by
an expression to test. The expression can be simple or complex, and must resolve to a single Boolean or

UnForm Version 7.0 235

numeric result. For numeric results, a 0 is considered false, and anything else is considered true. Once
resolved, if true the THEN clause is executed, otherwise the ELSE clause, if present, is executed.

Both the THEN clause and the ELSE clause can contain any statements, including nested IF statements.
A closing END_IF after a THEN or ELSE clause will terminate the conditional nature of statements
following it.

Here are some examples of IF statements:

if amount < 0 then text$="Credit Balance"

if x$="A" then desc$="Acme Rental" else if x$="S" then desc$="Smith & Sons" else desc$="N/A"

if testmode then dummy$=set(1,1,10,"Test Mode") end_if; goto exitsub

UnForm’s code block parse also supports blocked if-then-else syntax, like this (optional elements
indicated in square brackets):

If condition [then]:

Statementl
Statement?2
[else
Statementl
Statement2
e]
End if

The key elements are the colon (:) at the end of the *“if condition” line and the closing “end if”. The
structures can be nested, with additional if statements inside the if or else sections.

While Wend Loops

One of Business Basic's looping structures is the WHILE..WEND loop. At the top of the loop is a while
condition statement, where the condition is evaluated like an IF clause. As long as the condition is true,
or returns a non-zero value, the statements up until the closing wend statement are repeated. To escape
the loop, you can use the BREAK verb, the EXITTO label verb, or set variables such that the condition
is false before executing the wend verb. To iterate the loop from within, use the CONTINUE verb.

Here is a simple WHILE...WEND syntax that substitutes (*") with (') in a string:
x=pos($22%$=work$)
while x >0

work$(x,1)=""

x=pos(22=work$)
wend

For Next Loops

UnForm Version 7.0 236

Another commonly used loop structure is the FOR...NEXT loop. A FOR statement identifies a
variable, a start value, an end value, and an optional step value. The variable is set to the start value; the
loop statements are executed until a NEXT statement is encountered; the variable is incremented by the
step value; and, until the end value is exceeded, the loop statements are repeated. To exit the loop
before the end value is reached, use the BREAK verb or the EXITTO label verb. To iterate the loop
from within, use the CONTINUE verb. Here is an example that would perform the same substitution
shown above (though more slowly):

for i=1 to len(work$)
if work$(i,1)=$22% then work$(i,1)=""
nexti

File Handling
Business Basic has very powerful facilities for handling files. Not only are there intrinsic keyed file
types, but also text files and pipes can be used.

If the application with which UnForm is integrated is written in ProvideX, then full native access to the
data files is available. If the application is written in BBx, then the bbxread() function can be used to
obtain record data via an instance of BBx.

If UnForm is working with a non-Business Basic application (e.g. C, Cobol, Informix, Oracle, etc.),
there are additional means to obtain data, via ODBC on Windows or pipes on UNIX.

Opening Files

File access is performed through an open file channel. The OPEN statement opens the file on a numeric
channel in preparation for later file access. Open(99)"customers.dat™ opens the named file on channel
99. Channel numbers can range from 1 to 32767, though the operating system will typically impose a
limit on the number of simultaneous channels that can be opened. Channel numbers must be unique.
Once opened, that channel number is no longer available until closed. To avoid conflicts with channel
numbers, it is common to use a special function that returns an available channel number, UNT. Here is
a typical syntax:

cust=unt
open(cust)"customers.dat”

After that, file access verbs can use the cust variable to access the "customers.dat" file.
To open a pipe channel, you could do the following:
faxlist=unt

open(faxlist)”|sqlexec 'select cust,faxnum from customers™
read(faxlist)linel$

UnForm Version 7.0 237

labelprt=unt
open(labelprt)">Ip —dlabels"
print(labelprt)"To: "+name$
print(labelprt)" "+address1$

Reading Files

There are two verbs used for reading channels: READ, and READ RECORD. The READ verb
understands line and field separators, whereas the READ RECORD verb reads blocks of a specified size
or whole records, in the case of intrinsic keyed file types. The READ verbs accept several options,
including "key=string™, "ind=index", "err=linelabel”, "end=linelabel”, and others. Full details can be
found in the language reference manuals. A special syntax of "err=next" is used by UnForm to simply

drop through to the next statement if an error occurs.
To read from an intrinsic keyed file (ProvideX files only), you might use one of these:
read(cust,key=custkey$,err=next)*,name$,** * * faxnum$

read record(cust,key=custkey$,err=next)custrec$
name$=custrec$(7,30),faxnum$=custrec$(112,10)

To read from a pipe or a text file, you may not use a key= clause, so you just read sequentially through
the file:

read(faxlist,end=done)cust$,faxnum$

Writing files

You probably would not want to write to your application files, but you may well want to write to
external devices or log files. Writing is performed with these verbs: WRITE or WRITE RECORD and
PRINT. Each uses a channel number and arguments to print. PRINT and WRITE terminate their values
with a line-feed character, unless a comma follows the last argument. WRITE RECORD will write a
single string variable without any termination so it is suitable for binary or blocked output.

print (logfile)"Customer: "+custname$+" printed on "+date(0,tim:"%D-%M-%Y :%Hz:%mz")
dim block$(128); block$(1)=custname$,block$(31)=str(amount:"000000.00"); write record(log)block$

UnForm Version 7.0 238

INTERNAL VARIABLES

In addition to your own variables, UnForm provides a list of variables that you can use, or in many
cases, set to a desired value.

Can be set to values described in the across command. Available only in prepage and

across$ precopy.
_ Can be set to values described in the bin command. Available only in prepage and
bin$ precopy.
Can be set to values described in the cols command. Available only in prepage and
cols$ precopy.
_ Can be set to the number of copies to generate for a page. You can change this value
copies to dynamically adjust the number of copies. If the number you specify is higher than
the number specified by the rule set, then that highest defined copy's text and
pcopies enhancements will be repeated until your specified copies are complete. This value is
reset after each page to the rule set default, so you can't set it in the prejob routine. If
you set pcopies, that is also honored like the pcopies command.
Contains the current copy number in precopy. Generally you shouldn't modify this
copy value. If you need to skip printing of a copy, use the skip variable instead.
. Can be set to "Y" or "y" to enable crosshair grid printing over the output (laser and
crosshair$ | PDF output only).
Can be set to values described in the down command. Available only in prepage and
down$ precopy.
_ Stores the current driver as "laser", "pdf", or "zebra". The win and winpvw drivers are
driver$ considered variants of PDF, and driver$ is set to "pdf* when used. This variable
should not be changed.
Can be set to values described in the duplex command. Available only in prepage and
duplex$ precopy.
Can be set to the values described in the gs command. Available only in prepage and
gs$ precopy.
. Can be set to values described in the margin command. Available only in prepage and
margin$ precopy.

orientation$

Can be set to "landscape”, "portrait™, "rlandscape”, or "rportrait”. It can also be setto a
literal digit: "0"=portrait, "1"=landscape, "2"=reverse portrait, or "3"=reverse
landscape.

outline$

Can be set to an outline string used when the PDF outline feature is turned on, by use
of the outline command. Multiple levels of outlines can be defined by delimiting
levels with vertical bars, such as outline$="Customer type "+get(1,6,4)+"|Page
"+str(pagenum). This example would produce a 2-level outline structure with a

UnForm Version 7.0 239

customer type code being the top level, and page numbers as child levels.

output$

In laser output, this can be changed in prejob, prepage, or precopy, and is tracked by
copy. Set it to the device or file name desired for output on the server. If it changes
for a given copy in the middle of a laser job, UnForm will close the prior output
channel and reopen the new one. This can be used to send a copy to a different printer,
or to a fax device. You can set the value to any printer alias known to UnForm (in the
unform.cnf file), any file, or a pipe or redirect, such as ">vfx -n "+faxnum$. When
using a UNIX redirect or pipe, be sure to add quote characters (CHR(34)) around any
data that might contain ampersands (&) or other shell-aware characters.

For PDF output, you can set this value in the prejob code block to override any —o
command line setting. Setting this value in any other code block is ignored.

pagenum

Can be referenced as the current page number. The value should not be changed.

paper$

Can be set to values described in the paper command. Available only in prepage and
precopy.

rows$

Can be set to values described in the rows command. Available only in prepage and
precopy.

skip

Can be set to a non-zero value in prepage or precopy, to skip printing of that page or
copy, respectively.

text$[all]

Stores the text for the page as a one-dimensional array. For example, text$[2] is the
second line of text on the page. In prejob, it contains the content of the first page. In
prepage and precopy, it contains the content of each page in sequence. You can use
the array directly in code, or you can use the built in get(), mget(), set(), cut(), and
mcut() functions to retrieve or manipulate its contents.

tray$

Can be set to values described in the tray command. Available only in prepage and
precopy.

uf. xxx$

A string template or composite string that can provide access to many attributes of the
UnForm environment and command line.

uf.cols Columns for the current page.
uf.copies Copies defined for the job.

uf.dfrule$ Default rule file from the environment.
uf.driver$ Driver for the current job.
uf.emattach$ Command-line —emattach value.
uf.emfrom$ Command line —emfrom value.
uf.emlogin$ Command line —emlogin value.
uf.emmsgtxt$ Command line —emmsgtxt value.

UnForm Version 7.0 240

uf.emoh$

Command line —emoh value.

uf.empswd$

Command line —empswd value.

uf.emsubject$

Command line —emsubject value.

uf.emto$ Command line —emto value.

uf.errfile$ Command line —e file value (dynamically determined by the
server).

uf.home$ Home directory of the UnForm server.

uf.inputfile$ Command line —i file value (dynamically determined by the
server).

uf.job Current job number.

uf.maxdatacols

Maximum column in the current page.

uf.maxdatarows

Maximum row in the current page.

uf.maxpage

The maximum page number for the job. This value is calculated
at the start of the job, and may be adjusted if pages are inserted
or removed.

uf.outputfile$

Command line —o file value. For server-based output, this is the
—0 option sent by the client. For client-based output, this is
dynamically determined by the server.

uf.page Number of input lines per page. Do not confuse this with the
pagenum variable, which holds the current page number.

uf.paper$ Paper size name.

uf.pcopies Pcopies defined for the job.

uf.pdfauthor$ Command line —pdfauthor value.

uf.pdfkeywords$ | Command line —pdfkeywords value.

uf.pdfprotect$ Command line —pdfprotect value.

uf.pdfsubject$ Command line —pdfsubject value.

uf.pdftitle$ Command line —pdftitle value.

uf.prm$ Command line —prm value.

uf.rows Rows for the current page.

uf.rulefile$ Command line —f rule file value.

uf.ruleset$ Selected rule set for the current job.

uf.shift Horizontal shift value.

uf.subjob Set to 1 (can be treated as a boolean) if this is a sub-job executed

by the jobexec() function.

UnForm Version 7.0

241

uf.subst_file$ Command line —s file value.

uf.vshift Vertical shift value.

uf.warn$ Job warning messages, delimited by line-feeds. For example, to
add your own message: uf.warn$=uf.warn$+"My
message"+chr(10).

UnForm Version 7.0 242

INTERNAL FUNCTIONS

In addition to the intrinsic functions available in the run-time Business Basic engine, the most common
of which are documented later in this chapter, UnForm provides a set of functions specific to its
operating environment. Some functions are macros that perform an action, rather than return a value.

arrtostr(arr$[all],str$,dIm$)

Converts array arr$[all] to delimited string str$,
using dim$ as delimiter.

bbxread(file$,key$,rec$,errcode)

Executes an instance of BBX, configured with the
bbpath=path line in uf70d.ini, and obtains the
record specified by key$ in file$. If an error occurs
in the BBXx instance, it is returned in errcode. An
errcode value of -1 indicates no error occurred.
The variable rec$ can be DIMed as a string
template, but be sure to use '=10' to define field
separators, as the default separator in the ProvideX
engine is a hex 8A rather than the BBx default hex
OA. Ifitis not defined as a template, the raw
record data is returned and may be parsed.

Here is an example:

prepage{

ky$=get(65,5,6)

dim rec$:"id:c(5*=10), *:c(1*=10),
.., Fax:c(9*=10)"
bbxread(**/u/data/CUSTOMER",ky$, rec
$,ec)

if ec=-1 then faxnum$=rec.fax$

}

clientenv(names$)

Returns client-side environment variable value.

cmtocols(centimeters)

cmtorows(centimeters)

Returns columns or rows, given a centimeter
measure.

cnum(expression)

Returns a number from a text string, after stripping
formatting characters such as commas and dollar
signs. Parentheses and minus signs indicate
negative numbers. Use this function, rather than
the intrinsic num() function, to convert text to

UnForm Version 7.0

243

numbers if the text can contain punctuation.

Counts elements of a string, parsed by a delimiter.
count(str$,dim$)

Counts elements of a string, parsed by a delimiter,

countq(str$,dim$) honoring quoted strings.
Returns the value text at position col, row, for cols
cut(col,row,cols,value$) columns, after setting the specified position to

value$. If value$ is null ("") or spaces, cut()
effectively erases the text. This is useful for
moving data in text commands, such as text
10,60,{cut(10,59,10,""")}, which would cut text
from 10,59 and move it to 10,60.

Connects to the database source identified by
dbconnect(name$,timeout,errmsg$) name$. The support server configuration is used to
define the names and associate them with data
source connection strings. Typically done in a
prejob code block. Requires the Windows Support
Server.

Executes the sql command cmd$ and returns zero
dbexecute(name$, commands$, timeout, | or more result rows in response$. Columns are
fdelim$, rdelim$, response$, errmsg$) delimited by fdelim$ (tab - chr(9) - by default).
Rows are delimited by rdelim$ (CR-LF -
chr(13)+chr(10) - by default). Requires the
Windows Support Server, and a previously
successful dbconnect() function execution in the

current job.

Command removes page n, pages n+1 to end are
delpage(n) shifted down.

Returns 1 if the document type and ID exists in the
docidexists(lib$,doctype$,docid$) library, or O if not.

Sends an email, assuming emailing is properly
email(to$, from$, subject$, body$, configured in the mailcall.ini file, using the
attach$, cc$, bcc$, otherheaders$, login$, | information supplied. The arguments are positional
password$,logfile$) but need not all be supplied. For example,

email(trim(get(81,1,40)), info@acme.com,
"Please review"', messagebody$) will send a plain
message to the address stored at column 81, row 1,
for 40 characters in the current page. No
attachment, carbon copy, etc. information will be
used.

As the arguments are positional, if you need to
supply a login and password for the mail server to
perform authentication, then all the arguments must

UnForm Version 7.0 244

mailto:info@acme.com

be supplied, even if simply null (""). Note that this
email function is different from the email
command, in that the job itself is not sent, and
multiple emails can be sent during the job stream
within code blocks. This is useful, particularly in
combination with the jobstore and jobexec
functions, to develop batch email jobs.

Returns the value of the operating system

env(name$) environment variable in name$, or in a literal
quoted string. Returns null (") if the variable does
not exist.
May be used for any err=label option in any
err=next function or statement. Forces UnForm's error

trapping to ignore an error. You may, of course,
name your own err=label if desired.

exec(expression)

Executes a barcode, bold, box, erase, font, image,
italic, light, micr, move, shade, text, or underline
command from within the code block. Expression
must be a single string value that contains the text
of such a command, such as exec(""box
"+str(col)+",""+str(row)+",30,2.5). You can use
the exec() function to add enhancements to a print
job within the code block. The function can be
used in either prepage{} or precopy{} blocks.
Remember that some commands need quoted
parameters to work properly. For example, if you
exec() a text command, be sure to add quote
characters around the text to be printed, using one
of three methods: double any internal quotes, use
an expression that uses 22 for quotes, or use an
expression that uses CHR(34) for quotes. For
example, exec("'text 10,10," + chr(34) + message$
+ chr(34) + ",cgtimes,10™), or exec(""text " +
str(col) + **,"* + str(row) + ","""Quoted
Text""",univers,12").

exists(file$)

Returns 1 (true) if the file path specified exists, O
(false) otherwise.

get(col,row,cols)

Returns text from the text$[all] array, without
substring or array out-of-bounds errors.

get(col,row,cols,trim$)

Same as get(), but with a trim “Y”” or “N” option.

get(col,row,cols,trim$,page)

Same as get(), but with a trim “Y” or “N” option,
and a page number option to retrieve information

UnForm Version 7.0

245

from any page of the job.

get(col,row,cols,trim)

Same as get(), but with a Boolean trim (0 or non-0)
option.

get(col,row,cols,trim,page)

Same as get(), but with a Boolean trim (0 or non-0)
option and a page number option.

getarc(lib$,doctype$,docid$,subid$,
filename$ [,errmsg$])

Retrieve an archive image to a user-specified or
temporary file.

getfile(filename$)

Returns contents of filename$ as a string. Can be
used to load values from text files.

getdocidprop(lib$, doctype$,docid$,
prop$)

Sets prop$ to a composite string containing
properties about the document specified. These
properties include:

Prop.date$ - date in yyyymmdd format
Prop.time$ - time in hhmmss format (24-hour
clock)

Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line
breaks

Prop.keywords$ - semi-colon delimited keywords
Prop.categories$ - semi-colon delimited categories
with pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

If the document type and ID does not exists in the
library, each of the fields in the composite string
will be empty. Use the docidexists() function to
determine if a document exists.

getfilefield(filename$,key$,field)

getfilefield(filename$,key$,field, dim$,
quoted)

getfilerec(filename$,key$)

getfilerec(filename$,key$, dim$, quoted)

Returns a record or field from a text file, given a
key that matches the first field in each record. The
dIm$ field is a field delimiter, such as "," or chr(9)
for comma or tab delimiters, and the quoted field is
a Boolean (0=false, non-O=true) that indicates
fields may be quoted, as would be the case in a
classic csv file. If no matching key is provided, the
functions return an empty string. 1f no dim$ and
quoted parameter is supplied, then a classic
comma-separated-value format is presumed
(dIm$=",”, quoted=1).

These functions provide an efficient way of
providing data to UnForm from applications. For
example, an application could export customer IDs

UnForm Version 7.0

246

and email addresses, and UnForm could lookup
addresses by customer ID.

Files are parsed once and cached until they change,
so subsequent retrievals are very fast. Caching is
permanent (across jobs).

Keys are limited to 127 bytes, so the first column
must be limited accordingly.

In a quoted file, fields that contain a quote
character must escape that character with a
backslash, like "Board - 1' 2\" length".

Returns the section or, if name$ is supplied, the
getinival(filename$,section$[,name$]) value of the name in the section specified, of the
.ini formatted file specified. .ini files are organized
in to sections via [name] headers, and lines within
the section contain name=value pairs. When a full
section is returned, each line is delimited by a
linefeed character (chr(10) or $0a$). This can be
useful in cases where data is stored in .ini file
format and UnForm needs to access it.

Fills text array arr$[all] with page n data lines.
getpage(n,arr$[all])

Returns a value from the PPD file associated with
getppdval(name$,option$) the job, either a default file selected by the —p
driver command line option, or one explicitly
named with a —m command line option. PPD files
are generally used by PostScript printers to define
command sequences for settings like duplex, bin,
and tray selection. The laser driver can also use a
custom PPD file for defining PCL sequences for
various printer options. This function can be used
to retrieve control sequences for use in boj, €oj,
bop, or eop values.

_ . ' Returns a list of document archive sub ID’s,
getsubids(lib$,doctype$,docid$[,dim$]) delimited by linefeeds or by the specified delimiter.

Return columns or rows, given a measurement in
inchtocols(inches) inches.

inchtorows(inches)

Inserts text array arr$[all] as page n, shifting
inspage(n,arr$[all]) existing pages as necessary. If n is any number
greater than the highest page number, or -1, a page
is appended (i.e. inspage(999,x$[all]) will add page

UnForm Version 7.0 247

3 to a 2-page job.

jobclose(id$...)

Closes and erases the temporary storage file
associated with id$. Open jobs are all
automatically closed at the end of the primary job.

jobexec(id$,output$,driver$,argstring$)

Executes a sub-UnForm job using the parameters
given. The id$ identifies a job with one or more
pages previously stored with the jobstore()
function. The output$ value defines where the sub-
job's output should go. This can be a file name,
like "/archive/"+invoice$+".pdf", a device name,
like "//printsrv/hp4000", or a pipe/redirect, like
">|p —dhp4000 —oraw". The driver$ argument can
be set to one of the —p drivers supported by
UnForm, such as laser or PDF. The argstring$
contains any additional command line parameters
you wish to add to the sub-job command line. You
can use any parameter supported by the uf70c
client, though the -i, -0, and -p options are specified
using the other three function arguments.

A rule set can check uf.subjob, as "if uf.subjob" or
"if uf.subjob=1", to test if an instance is running
from a jobexec() function.

jobfile(id$)

Returns the temporary text file associated with id$.

jobstore(id$)

Stores the content of the current page in a
temporary file, identified by id$. The value in id$
is user-defined, and each unique value stores
content in a different temporary file. The other job-
related functions use the id$ value to select which
file to use. For example, you could store a whole
job with an id$ of "job", and individual documents
in jobs identified by their document number. Each
would be stored separately and could be jobexec'd
separately.

Ibound(arr$[all][,dimension])

Returns the lower-bound of the array arr$[all]. If
arr$ contains multiple dimensions, you can specify
which dimension. For example, if arr$ is dimmed
as x$[100,1:2], Ibound(x$[all])=0,
Ibound(x$[all],2)=1.

left(str$,length)

Returns the leftmost length characters from str$,
padding with spaces on the right to enforce length.
Note also the mid() and right() functions.

libexists(lib$)

Returns O if library lib$ doesn't exist, or 1 if it does.

UnForm Version 7.0

248

Writes a log entry to the server log file, usually

log(msg$) uf70d.log.
_ Logs a message (time stamped) to the specified file.
log(msg$,logfile$) The file is created if necessary. If logfile$ is null,

the server log is used.

Returns text in lowercase.
lower(expression)

_ Returns the value of str$, trimmed of leading
[trim(str$) spaces.

Returns multiple lines of text, optionally with line-
mcut(col,row,cols,rows,values$,If$,trim$) | feed delimiters and/or trimmed of spaces. The If$
argument can be set to "Y" or "y" to add a line-feed
character between each line; likewise, the trim$
argument can be set to "Y" or "y" to cause each line
to be trimmed before returned. In addition, mcut()
assigns each line in the cut region to value$. Use
null (") or spaces to erase the source text.

Returns multiple lines of text into a single string,
mget(col,row,cols,rows,If$,trim$) optionally with a line-feed delimiter and/or
trimmed of spaces. This function is useful in
conjunction with multi-line functionality of the text
command. The If$ argument can be set to "Y" or
"y" to add a line-feed character between each line;
likewise, the trim$ argument can be set to "Y" or
"y" to cause each line to be trimmed before
returned.

Safely returns a substring without generating an
mid(arg1$,arg2,arg3) error 47 if the value in arg1$ isn't long enough to
accommodate position arg2 and length arg3. Note
also the left() and right() functions.

Multi-line set function. Will work with multi-line
mset(col,row,cols,rows,value$) value$, delimited with mnemonic \n character
sequences or chr(10) values.

Faxes filename$, normally an UnForm-generated
msfax(filename$, faxnums$, tags$, PDF file, to the fax number specified in faxnums.
errmsg$) Numerous supported tags can be specified in tags$,
in the format tagl=value,tag2=value,... Requires
the Windows Support Server. For more details, see
the Windows Support Server chapter.

Returns the nth element of the string str$, when
parse(str$,n,delimiter$) parsed by the delimiter specified. For example,
parse(*'one,two",2,",") would return "two". If the
delimiter is null, then any white space delimiter is
used.

UnForm Version 7.0 249

o This is the same as parse(), except that honors
parseq(str$,n,delimiter$) quoted values in the string str$, ignoring delimiters
contained in them.

Uses Ghostscript, local to the server or via the
pdftoimage(fromfiles$,tofile$,format$[,res | Windows Support Server, to convert from PDF file
olution[,errmsg$]]) fromfile$ to an image file tofile$, using the format
format$. Valid formats match those of the
Ghostscript drivers defined in uf70d.ini.

The prm() function has been added as a synonym to
prm(“name”) the gbl() and stbl() functions, which return global
string table values typically associated with the —
prm command line option.

Returns text in Proper Case.
proper(expression)

Updates the document properties of the document

putdocidprop(lib$, doctype$, docids, type and 1D in the library specified. The document

prop$) properties are replaced with the values found in the
composite string prop$. These string properties
are:

Prop.date$ - date in yyyymmdd format
Prop.time$ - time in hhmmss format (24-hour
clock)

Prop.title$ - title string

Prop.entityid$ - entity id string

Prop.notes$ - notes, which can have CRLF line
breaks

Prop.keywords$ - semi-colon delimited keywords
Prop.categories$ - semi-colon delimited categories
with pipe-delimited segments

Prop.links$ - semi-colon delimited list of links

All properties found in the string are updated, so
you must first read existing properties using the
getdocidprop() function, then modify those
properties desired, then update them with this
function.

This function will not add new documents to a
library. It only updates existing ones.

Replaces page n with text array arr$[all].
putpage(n,arr$[all])

. Returns the rightmost length characters from str$,
right(str$,length) padding with spaces on the left to enforce length.
Note also the left() and mid() functions.

UnForm Version 7.0 250

rtrim(str$)

Returns the value of str$, trimmed of trailing
spaces.

set(col,row,cols,value$)

Returns value$, after it places value$ in the
text$[all] array at the position indicated.

sshost(server$,port)

Sets the Windows Support Server hostname and
port. Default values are defined in the uf70d.ini
file in the sshost and ssport settings. This
command allows for dynamic changing to a
different server.

striplines(text$)

Returns text$, stripped blank lines from multi-line
text, such as addresses. As a byproduct, all CR
characters are also removed, leaving simple LF line
delimiters.

strtoarr(str$,arr$[all],dIm$)

Converts string str$ to an array arr$[all], by
splitting str$ on delimiter dim$

sub(str$,0ld$,new$)

Returns a string where all occurrences of old$ in
str$ are replaced with news.

subidexists(lib$,doctype$,docid$)

Returns 1 if the document type, document 1D, and
sub ID exists in the library, or 0 if not.

textfile(path$)

This function creates a file and returns a path name
to that file. The value of path$ is interpreted in
three ways. If null ("), a new temporary file is
created, and will be erased automatically when the
job is complete. Optionally, the value may start
with a period to force the extension of the
temporary file to match the value, such as “.pdf”.
Otherwise, the value should be a full path, and that
file will be created and returned. Such custom
paths are not erased automatically at the end of the
job.

textwidth(text$, fontnum|fontname$, size,
attr)

Returns the text width in columns of text$ given the
font number or name, size in points, and style
attribute (O=normal, 1=bold, 2=italic, 3=bold
italic). The function honors the same font mapping
as is used in regular UnForm processing for pdf,
and understands the same fonts that are understood
for internal calculations for justification, where
laser fonts are loaded from the standard fonts.txt
file, pdf fonts are mapped from these, and
postscript fonts are loaded from .afm files in the
psfonts directory. For Postscript, the width is based
on the Windows ANSI symbol set.

trim(expression)

Returns expression after trimming spaces from the
left and right side.

UnForm Version 7.0

251

ubound(arr$[all][,dimension])

Returns the upper-bound of the array arr$[all]. If
x$ contains multiple dimensions, you can specify
which dimension. For example, if arr$ is dimmed
as x$[100,1:2], ubound(x$[all])=100,
ubound(x$[all],2)=2.

upper(expression)

Returns text in UPPERCASE.

When using variables and line labels, you should avoid using any values that begin with "UF".
UnForm reserves all such variables and labels for its use. You may use a backslash (\) at the end of a
line to continue the statement on the next line. Lines prefixed with "#" are not added to the code.

Two data elements from the command line can be referenced in code blocks using the stbl() function
(use gbl() in ProvideX environments). The —s sub-file option will generate stbl values as "@name". For
example, if the substitution file contains the line ‘company=Smith Produce’, then stbl("@company") will
return "Smith Produce". Further, the —prm command line option will directly create stbl values.

UnForm Version 7.0

252

RUNTIME VERBS AND FUNCTIONS

The following list is a summary of verbs and functions that are commonly used in UnForm applications.
Note that all functions accept an ",err=linelabel” or "err=next" argument, and all verbs accept the same
after any parameters, to branch if an error occurs. Optional arguments are shown inside braces {}.

ASC(string)

Returns the ASCII numeric value (0-255) of the first
character of string.

ATH(string)

Returns a binary equivalent of a human readable hex string.
ATH("1B") returns an escape character.

BIN(integer,length)

Returns a binary integer representation of the specified
length. The inverse function of this is the DEC() function.

BREAK

Breaks out of a loop structure. Equivalent to EXITTO
linelabel if linelabel is the line after the closing WEND or
NEXT.

CHR(integer)

Returns a character string whose ASCII value is integer,
between 0 and 255. CHR(27) returns an escape character.

CONTINUE

Executes the next iteration of a loop structure. Equivalent
to GOTO linelabel, if linelabel is the closing WEND or
NEXT.

CVS(string,arg)

Returns a converted string according to the cumulative
value of the integer arg. Values: 1=strip leading spaces,
2=strip trailing spaces, 4=uppercase, 8=lowercase, 16=non-
printable characters to spaces, 32=multiple spaces to single
spaces. CVS(a$,3) trims both leading and trailing spaces.

DATE(julian {,time} {:mask})

DTE(julian {,time} {:mask})

returns a human readable date and/or time, based on the
julian date (see the JUL() function), a decimal time (hour
and fraction of hour — 12.5=12:30PM), and a format mask.
The mask can contain combinations of placeholder
characters and modifiers. The placeholders are %M=month,
%D=day, %Y =year, %H=hour (24 hour clock), %h=hour
(12 hour clock), %m=minute, %s=second, %p=AM/PM.
Modifiers include z=zero fill, s=short text, I=long text.
Examples on June 30, 1999 at 1:30 in the afternoon: date(0)
returns "06/30/99", date(0:"%MI %D, %YI") returns "June
30, 1999", date(0,tim:"%hz:mz %p") returns "01:30 PM".

DEC(string)

Returns the decimal conversion of the binary integer in
string. The counterpart to the BIN() function. To treat
string as an unsigned integer, you should use the form
DEC(00+string).

DIM string(length {,char})

Returns a string of length size, of spaces or the specified
char character.

UnForm Version 7.0

253

DIM name[dim1{,dim2{,dim3}}]

Creates a numeric or string array variable. Dimensions can
be simple integers, indicating an index range of 0..dim, or
two integers separated by a colon, like 1:12.

Returns the current disk directory. On Windows,

DIR("") DIR(driveletter) will return the current directory for the
specified disk drive.
Returns the 10's exponent value of number. EPT(100)=3,
EPT(number) EPT(12)=2.

ERASE filename

Erases a file. Obviously, care should be taken to only erase
temporary work files.

EXITTO linelabel

Exits a loop structure (current level only, in nested
structures) and jumps to the specified linelabel.

FBIN(number)

I3E(number)

Returns a 64-bit IEEE number in natural left to right
ordering.

FDEC(string)

ISE(string)

Returns the decimal value of a 64-bit IEEE number.

FID(channel)

Returns a file identification string for the file opened on
channel. For devices, just the device name is returned. For
files, the first byte indicates the file type (00=indexed,
$01%=serial, 02=keyed, $03%$=text, 04=program,
$05%=directory, 06=mkeyed, etc.) You can verify a file
is a plain text file like this: test$=fid(filechan); if
test$(1,1)=303$ then x$="text file".

FILL(integer{,string})

DIM(integer{,string})

Returns a string if integer length, made up of successive
iterations of string, or spaces if no string is provided.
FILL(7,"abc™) will return "abcabca".

FIN(channel)

Returns additional file information not found in the FID()
function. A common use of this function is to determine file
size, which is stored as a binary integer in the first four
bytes. To get the length of a file: x$=fid(filechannel);
length=dec(00+x$(1,4)). Additional potentially useful
information can be found as well. See the language
reference manual for more details.

FOR numvar=start TO end {STEP
increment}

Initiates a loop, using a numeric variable initialized to start
the first pass through the loop, incrementing by 1 or the
specified increment, which can be negative, until the
variable exceeds (or goes below in the case of a negative
increment) end. The statements following this command,
until a NEXT numvar statement, are executed. The loop
can be broken from with the BREAK or EXITTO verbs.

UnForm Version 7.0

254

FPT(number)

Returns the fractional portion of a number. FPT(100.66)
returns .66.

GOSUB linelabel

Jumps to the specified linelabel. Statements will be
executed until a RETURN verb is encountered, and
execution will return to the statement after the GOSUB.

GOTO linelabel

Jumps to the specified linelabel.

HTA(hexstring)

Returns a human readable hex string of hexstring.
HTA(CHR(2)) returns "02". HTA("0") returns "30".

IF test THEN statement(s) {ELSE
statement(s)} {END_IF or FI}

Conditionally executes statements. test must be a simple
expression that produces a Boolean or numeric result
(O=false, non-0=true). Multiple statements can follow the
THEN or ELSE clause by separating them with semi-
colons. Statements following a END_IF are executed
without regard to the condition of the last IF test. Nested IF
statements are accepted without practical limit.

INT(number)

Returns the integer portion of a number. INT(99.645)=99.

JUL (year,month,day)

Returns the julian integer of the specified date elements.
The year should be specified, if possible, as a 4-digit year.
Otherwise the function will assume a century of 1900. The
complement of this function is the DATE() function.

LEN(string)

Returns the length of the string.

LET var=value{,var=value...}

Assigns variables to values. The variables can be numeric,
string, or array variables. The values can be any compatible
numeric or string expression. LET is implied when an
assignment is performed in context. "LET a=1" and "a=1"
are equivalent.

MASK(string{,regexpr})

MSK (string{,regexpr})

Returns the position where a regular expression pattern was
found in the string, or 0 If not found. If regexpr is not
specified, then the last regexpr used is re-used. This
provides a performance benefit for repeated uses of the
same regexpr. The length of the string matched is returned
by the TCB(16) function.

MAX(num{,num...})

Returns the largest number found in the list of nums.

MIN(num{,num...})

Returns the smallest number found in the list of nums.

MOD(num1,numz2)

Returns the remainder of dividing num1 by num2.
MOD(4,3)=1, MOD(6,3)=0.

NUM(string)

Returns the decimal value of a string, assuming the string is
a well-formatted value containing digits, a single optional

period (decimal point), and a single optional leading hyphen
(minus sign). Other punctuation or characters will return an

UnForm Version 7.0

255

error. NUM("-12.5") returns 12.5. NUM("1,456") results
in an error.

ON integer GOTO|GOSUB
linelabel{,linelabel...}

Branches to one of the indicated line labels based on the
value of integer. If integer is O or less, branch to the first
label, 1 to the second, 2 to the third, and so on. The last
label is used for integer values greater than that of the last
label.

OPEN(integer{,err=linelabel|next}{,i
sz=integer}) string

Opens the file named in string on channel integer. To open
a file in binary mode regardless of the file type, specify a
block size with the ",isz=integer" option.

POS(stringl relation string2
{,increment {,occurrence}})

Scans string2 for a substring having the specified relation to
stringl. POS("B"="ABC") returns 2. POS("B"<"ABC")
returns 3. The string can be searched in even character
increments: POS("02"="002002",2) will return 5, since the
second and third characters, though matching the search
string, are not located at an increment boundary. If the
string is not found, or the requested relation, increment, and
occurrence cause the string to not be found, the function
returns O.

PRINT(channel) value {,value...}{,}

Prints a series of values, numeric and/or string, to the file
channel specified. A line-feed character is added to the
channel unless the last character of the statement is a
comma.

READ{ RECORD}(channel
{,options}) variable {,variable...}

Reads data from the specified channel into the specified
variables, looking for field terminator characters to delimit
variables. Field terminators include line-feeds, carriage
returns, and nulls. Valid options include "err=linelabel”,
"end=linelabel", "siz=blocksize". "key=keystring",
"ind=index", and "dom=linelabel”. For intrinsic keyed files,
use the key= or ind= options to read specific records. For
text files, use READ to process line-feed delimited files, but
be aware that carriage return characters act as field
separators. To read text files as binary files, use READ
RECORD with a "siz=" option.

Places a non-executing remark line in the code. In UnForm,

REM you can also use a # character.

Retries the statement that caused the last error branch to be
RETRY taken.

Returns from a GOSUB branch.
RETURN

RND(integer)

Returns a pseudo-random number. The random number
sequence can be re-seeded by providing a negative integer,
so it is common at startup (like in a prejob code block) to
seed the RND function with a variable number, such as
MOD(JUL(0,0,0)+INT(TIM*10000),32000). The integer

UnForm Version 7.0

256

can be a number from —=32767 to +32767. Positive numbers
return a random integer from O to integer-1. If integer is O,
a random number between 0 and 1 is returned.

ROUND(number,precision)

Returns number, rounded to precision.
ROUND(1.566,2)=1.57. ROUND(100.83,0) returns 101.

SCALL(string)

SYS(string)

Executes the operating system command in string. Returns
the result code provided by the operating system. Use this
function to interface with the operating system or external
commands. This is an alternative to opening a pipe to a
command.

SETERR linelabel

Provides a generic error handler to catch errors not trapped
by err=linelabel branches in functions and verbs. UnForm
also adds error handling code to code blocks, and reports
errors in a job error file (temp/jobno.err in the server
directory).

SGN(number)

Returns a 1, 0, or -1, depending on the sign of number.

STBL(string1{,string2})

GBL(string1{,string2})

Returns and/or sets the global string table value named
stringl. If string2 is present, then the string table is set to
string2. In both cases, the value is returned. If stringl has
not been set, STBL(stringl) will result in an error (trappable
with err=linelabel, of course).

STR(number{:mask})

STR(string{:mask})

Converts a number to a string, optionally formatted with a
mask. The mask can contain any text, plus the following
placeholder characters: 0=zero filled digit, #=space filled
digit, "."=decimal point, ","=thousands separator, -, (,), and
CR for negative numbers. STR(99.91:"0000.00") returns
"0099.91". STR(19093.255:"###,##0.00") returns

"19,093.26".

STRING filename{,err=label}

SERIAL filename{,err=label}

Creates a text file of the name specified. Use either a string
variable or expression, or a quoted literal string.

Examples: STRING "/tmp/test.txt" or STRING
"/tmp/"+str(dec(info(3,0)))+".txt" err=next.

TCB(integer)

Returns task control information. Commonly used integer
values include: 10=last operating system error code and
16=length of MASK() function match.

Numeric variable that returns the decimal time of day, from

TIM 0.0 to 23.99.
Numeric variable that returns the next available file channel
UNT number.

WHILE condition...WEND

Looping construct that performs statements between
WHILE and WEND statements as long as condition is true
Or NoN-zero.

UnForm Version 7.0

257

WRITE {RECORD}
(chan,options)data

Writes data to a file. Numerous options are available, some
depending on the type of file. See the full programming
documentation available on www.pvx.com for more details.

Lexical Substitutions

With the change in Version 6 to the ProvideX run-time engine, it is possible that some BBx syntax in
code blocks will be incompatible. For the most part, the lexical substitutions automatically performed
by UnForm will handle any differences, with the exception of direct 1/0 to BBx data files, which can be
handled with the bbxread() function. However, if any additional substitutions are required, they can be
entered into a user-defined text file called uflexsub.usr.

The format for the lines in this file is simply bbxsyntax=pvxsyntax. An example is provided in
uflexsub.txt, which is a file that provides some standard syntax substitutions that the internal lex
capabilities do not support. You can add your own by simply creating uflexsub.usr and adding lines.

UnForm Version 7.0

258

http://www.pvx.com/

ERROR CODES

When code is executed, any errors that are not handled by err=label branches are reported as warnings

on a job trailer page.

High error code numbers are used to report errors in client-server communication.

Common error codes are shown in the following table.

Error Number Description

1 End of record error, which may occur on a buffered disk write operation if the data
is too long for the record buffer. This error is rare in UnForm jobs, but could occur
if output is being printed to a printer alias defined in the config.unf file.

2 End of file, which may indicate a disk full message, or a file that is too large for the
operating system to handle.

10 An invalid file name was given.

11 A missing key on a keyed read operation, or a duplicate key on a keyed write
operation with a DOM= option.

12 A missing file error on a file open operation, or a duplicate file error on a file
creation operation.

13 Normally a file permission error.

14 A file channel conflict or locking conflict error.

16 Out of resources, such as file handles. If this error occurs, it is often due to opening
too many files. This can easily occur if files are opened but not closed in a loop or
call construct.

18 Normally a file or directory permission error.

20 Syntax error. Common causes include mismatched parentheses, incorrect spelling
of verbs or functions, or missing or incorrect function arguments.

21 or 25 Missing statement, as referenced in an ERR=label, or a goto or gosub branch.

23 Missing GBL/STBL variable name.

26 String/Number mismatch, where a string variable or literal is used where a number
IS expected, or visa versa.

27 Stack error, such as a return without a gosub, or a wend without a while.

28 For/Next error, such as executing a next without an associated for.

29 Mnemonic error. Mnemonics are pre-defined codes inside single quotes, such as
'FF' or 'LF'. Therefore, single quotes are not valid as string literal indicators; only
double gquotes are.

30 Corrupt program, which indicates that UnForm itself is probably corrupted, unless
this error occurs on a call statement referencing an external program.

31 Out of memory.

33 Out of memory.

36 Mismatched arguments on a call statement.

40 Numeric overflow, normally caused by a divide by zero.

41 An integer overflow or range error. Some functions require integer arguments, so a
floating point number will cause this error. Also, some functions require integer
arguments to fall in a certain range, and this error will occur if the function is given
a value outside of the valid range.

42 Array subscript error.

UnForm Version 7.0

259

Error Number

Description

43 Masking error.

46 String length error.

47 Substring error, such as a starting position of 0 or a length greater than the length of
the string.

997 The client's IP address is not in the server's list of valid addresses. To correct this
problem, the allow= line in the server's uf70d.ini file must be modified to match the
network addresses in use, and the uf70d server restarted.

998 The maximum number of concurrent jobs licensed was exceeded.

999 The server was unable to start the secondary process to handle the job within the
allotted time of 30 seconds. Possible causes include a sluggish server and network
problems, such as a DNS server timeout.

1024 The Windows uf70c.exe client can report this error if the network connection to the
server is too slow.

1057 The Windows uf70c.exe client can report this error if the server is not running or a

firewall is blocking the primary listening port.

UnForm Version 7.0 260

EMAIL INTEGRATION

UnForm includes a copy of the MailCall utility that enables emailing of attachments from within
UnForm. This is most often used to send PDF files. It can be used to email laser printer (PCL5) files, as
long as you know the email recipient has a compatible printer that supports any of the fonts used in your
documents. If you use CGTimes, Courier, and Univers fonts, then any PCL5 laser print device should
be able to properly print documents, as long as the user can copy the file directly to the printer.

The MailCall utility is used internally by both the email command, which emails a complete PDF-
formatted job, and the email() function, which can send email(s) in mid-job, possibly with attachments
resulting from sub-jobs managed by the jobxxx series of code block functions. These two features are
capable of handling most email requirements. However, within a code block, you can use the MailCall
program directly, for any degree of control required. For example, the MailCall utility provides logging
facilities that are helpful in debugging connection or communication problems. To implement logging,
direct calls to the MailCall program are required.

Generally, the only requirement to get email working is to configure the server= line in the mailcall.ini
file. This line needs to name the machine or IP address of the SMTP server that MailCall connects to.
Other configuration options serve as default values.

The remainder of this chapter discusses the utility in depth.

Configuration

To configure MailCall, you need to edit the mailcall.ini file, using any text editor. If you don't have a
mailcall.ini file, then you can rename mailcall.sds to be mailcall.ini. The following notes provide details
about each option.

The most important element of the configuration is to ensure the system that executes MailCall has
connectivity to your SMTP mail server. This may be an in-house system, or it may be hosted by your
Internet Service Provider. A fairly foolproof way to test this is to telnet to port 25 on the mail server
from your system (telnet hostname 25 from either UNIX or an MS-DOS Command Window). If you
get a non-error response, MailCall should work.

server=smtp-server

This contains a reference to the IP address or domain name of the SMTP email server. This is used by
the native socket interface, the mailcall.exe program, and the mailcall.pl program. If your mailer=
setting uses sendmail or mmdf, this value is not used.

port=port-number

When native sockets are used, the default SMTP port of 25 can be overridden by setting a port-number.
Normally, this should not be required.

UnForm Version 7.0 261

from=email-address
Defines a default 'from’ address if none is supplied when sending email.

hostname=hostname

If the environment does not provide a system name that is valid for the SMTP server, you can specify a
value here. If no value is specified, then MailCall will determine the system hostname with the UNIX
"hostname™ command, or on Windows with the INFO() function in Visual PRO/5 or the NID variable in
ProvideX. This element is only used by the native socket support.

login=username

password=password

If the SMTP server requires authentication, then you can define a default username and password with
these elements. It is also possible to specify a username and password within the CALL interface.
These values, if required, are supplied by the mail administrator, and must be supplied exactly as
specified or you will probably get an authentication error and be unable to send mail.

mailer=commandline
NOTE: When running MailCall under UnForm 7, there is no need to configure a mailer= line.

If MailCall will not use internal sockets, then this line configures how MailCall actually sends the mail.
If you are running under ProvideX or PRO/5 or Visual PRO/5 revision 2.2 or higher with a proper alias
line defined, MailCall will use internal sockets and this line does not need to be configured. When
required, BBx executes this command line via the SCALL() function. There must be a % character in
the command line, which MailCall substitutes with the email submission file at run-time.

If no mailer value is set (all lines are commented) and a mailer is required, then a default mailer line is
constructed, using "perl mailcall.pl % >mailcall.pl.log 2>mailcall.pl.err” on UNIX or "mailcall.exe %"
on Windows. The proper path to the mailer is automatically generated. In other words, if you have
Perl or are on Windows, there is generally no need to configure a mailer= line.

On Windows, commandline should be set to the full path for mailcall.exe plus the % argument, such as
‘c:\mailcall\mailcall.exe %'. Be sure to use DOS-style backslashes rather than forward slashes.

On UNIX, you will probably want to use mailcall.pl. mailcall.pl should be in the same directory as the
MailCall program, and mailer should be set to the full path to mailcall.pl. The commandline should be
‘perl /usr/mailcall/mailcall.pl % >/dev/null’ (adjust the directory path as necessary). Perl, of course,
must be installed on your system for this to work. To enable logging, change the ">/dev/null” to
">pathname", and the conversation that mailcall.pl has with the SMTP server will be logged to that file.

If you use sendmail, the commandline '/usr/lib/sendmail —t <%' should work.
If you use mmdf, then the commandline 'echo SLOGNAME >%?2; cat % >>%2; /usr/mmdf/bin/submit -

uxto,cc* <%z2; rm %2" is used to submit email messages. The command line argument "-uxto,cc*"
instructs submit to scan for To: and Cc: headers for addresses.

UnForm Version 7.0 262

Note that mmdf doesn't support Bcc: headers, while the other three methods do.

timezone=zone

Internet mail must include a date and time header; a properly formatted time will include your time
zone. On Windows, the zone is added to the date and time header in the submission file. On UNIX, the
time zone is determined from the date command.

charset=charsetname
The default character set in Internet email is "us-ascii*. With this setting, it is possible to override this
default for text elements of an email that includes attachments, including the body text itself.

Most configuration options have equivalent variables in the CALL string template. If you define values
in the template, they override the equivalent values in the configuration file.

Implementation
Implementing MailCall requires the use of code blocks to establish temporary output files and then the
execution of MailCall itself.

Here is a sample PDF rule file that can be used to email a PDF document. Since the pdf driver can only
be used to produce one PDF file at a time, there is only one file to worry about.

[mailpdf]
cols 80
rows 66

prejob{

set output file to a unique name using process ID

note the pdf driver only allows output changes in prejob
output$="/tmp/email"+str(dec(info(3,0)))+".pdf"

}

postdevice{

call uf.home$+"mailcall.pv”,1,x$,"™"
X.to$="someone@somwhere.com"
x.subject$="PDF Report attached"
X.msgtxt$="Here is a sample PDF file.\n"
x.attach$=output$
x.from$="sdsi@synergetic-data.com"
call uf.home$+"mailcall.pv",0,x3$,""
erase output$

¥

UnForm Version 7.0 263

Here is a slightly more complex example, designed to email the second copy of a PCL document. PCL
allows output to be split in the middle of the job, so this technique would work in a batch run where a
document reference number is used to define the output name. This sample assumes the report will
contain the email address at column 1, row 1 of each document.

[mailpcl]
cols 80
rows 66
copies 2

prejob{
initialize mailer$ template
call uf.home$+"mailcall.pv",1,mailer$,""

¥

precopy{
set copy 2 output to document number plus extension

if copy=2 then output$=get(70,6,6)+".pcl"
}

postdevice{

whenever the document number changes, this routine is executed

if copy<>2 then goto skip_mail

mailer.to$=trim(get(1,1,40))

mailer.subject$="Report attached"

mailer.msgtxt$="Here is the report you asked for. Copy it to your laser printer.\n"
mailer.attach$=output$

mailer.from$="sdsi@synergetic-data.com"

call uf.home$+"mailcall.pv",0,x$,""

erase output$

¥

MailCall Reference

CALL uf.home$+"mailcall.pv", mode, dat$, errmsg$

You may call either mailcall.pv or mailcall.bb; both are identical files for use within UnForm.
Arguments:

mode is an integer value that controls how MailCall interprets or returns data in the dat$ argument. The
following are valid mode values:

0 Send mail based on data in string template dat$
1 Return a string template suitable for mode=0 in dat$

UnForm Version 7.0 264

2 Return version information in dat$
For modes 0 and 1, dat$ is a string template in the format:

from:c(1*=0),to:c(1*=0),cc:c(1*=0),subject:c(1*=0),otherhead:c(1*,msgtxt:c(1*=0),attach:c(1*=0),statu
s:n(1*=0),forcebase64:n(1*=0),forcenotify:n(1*=0),bcc:c(1*=0),bodymime:c(1*=0),charset.c(1*=0),tim
eout:n(1*=0),statuspause:n(1*=0),dialog:n(1*=0),login:c(1*=0),password:c(1*=0),logfile:c(1*=0),timez
one:c(1*=0),charinterface:n(1*=0),logdata:n(1*=0)"

To provide for additions to this base template, you should always use a single CALL using mode=1,
which will return a usable template in dat$.

For mode 2, dat$ returns a printable string that describes the version and license status.
Here is a description of each template field:

dat.from$ contains the sender's email address. This value defaults to what is specified in the
"from=address" line in mailcall.ini

dat.to$ contains one or more email addresses delimited by commas. Note that if multiple addresses are
desired, it is more common to place additional addresses in the cc$ field. Each address should be
structured in one of two ways: name@domain or "text name" <name@domain>. It is important that if
any data is present other than the plain internet email address, that the Internet address be enclosed in
angled brackets <>.

dat.cc$ contains zero or more carbon copy addresses. Multiple addresses must be delimited with
commas. Address formats are the same as for dat.to$, above.

dat.bcc$ contains zero or more blind carbon copy addresses. Multiple addresses must be delimited with
commas. A blind carbon copy address receives a copy of the email, but the Bcc: header is removed
from the submission, so no other recipients know of the Bcc: recipients.

dat.subject$ contains a single line of subject text, describing the message content.

dat.otherhead$ contains additional mail headers, should they be necessary. The rfc822 specification
allows for user defined headers starting with the characters "X-", in the format of "X-name: value".
Each header line should be suffixed with a CRLF (or LF) delimiter ($0D0OA$). There must be no blank
lines in this value, and all lines should have a proper header structure of 'name <colon (:)> <space>
value'.

dat.msgtxt$ is plain text for the message body. It may contain line breaks delimited with CRLF (or LF)
sequences. Lines should not exceed 900 characters without line breaks. You may also use UNIX-style
line break escapes (\n sequences) instead of binary CRLF characters.

dat.bodymime$ can be used to define an alternate body text (dat.msgtxt$) MIME type. The default is
"text/plain”, but it is common to prepare message body text as HTML, in which case you can specify

UnForm Version 7.0 265

dat.bodymime$="text/html". This must be a well-known standard value (see the mime.typ file included
with MailCall), and should be of the text/* family.

dat.attach$ contains one or more file names to attach to the message, delimited with commas. If this
contains names, then MailCall will produce a MIME-encoded message, with the message body as plain
text, text-style files (MIME types such as text/plain or text/html) as quoted-printable attachments, and
other files as base64-encoded attachments.

dat.status, if set to 1 (or any positive value), will cause a status window to display as the email is
processed. This flag is honored when MailCall uses native sockets or the external mailcall.exe program.
When native sockets are used, the status window operates for both generation and SMTP server
submission. When the external Windows mailer is used, it only operates for submission. External
UNIX mailers do not support this flag.

For logging on UNIX installations, if you are using mailcall.pl, do this:

o Verify the setting of $log=1 in mailcall.pl near the top of the program
e Direct stdout to a file or the screen by modifying the mailer= line: something like "perl
/usr/mailcall/mailcall.pl % >/tmp/mailcall.log”. or just “perl /usr/mailcall/mailcall.pl %".

dat.statuspause can be set to the number of seconds to pause before closing the status window after the
SMTP conversation is complete. This can help the user see the process completion without a quickly
flashing window. This flag is only honored when MailCall uses native sockets and the dat.status flag is
set.

dat.forcebase64, if set to 1 (or any non-zero value), will cause MailCall to always encode files with
base64-encoding. By default, files whose MIME type is text are encoded using quoted-printable
encoding.

dat.bodymime$, if set, will override the default text/plain MIME type used for the message body.

dat.charset$, if set, will override the charset default defined in the mailcall.ini configuration file, or the
default of "us-ascii", when no setting is defined. Character sets are associated with any text body or
attachment.

dat.login$, dat.password$, if set, and if the SMTP server requires authentication, are used for the
AUTH LOGIN authentication process. These values would be provided by the ISP or mail server
administrator, and must be provided exactly as specified. These values are honored when MailCall uses
native sockets or the mailcall.exe or mailcall.pl mailers.

dat.logfile$, if set to a pathname, will trigger detail logging of the SMTP conversation when MailCall is

using native sockets. The file will be erased and created each time MailCall is CALLed. Be careful not
to use pathnames that should not be erased.

UnForm Version 7.0 266

dat.timezone$, if set, will override the normal time zone value that is applied to the Date: header. The
default time zone comes from either the timezone= value in mailcall.ini (for Windows) or the UNIX
'date +%Z' command. Use this to set a relative GMT value, like "-0800" for PST.

dat.charinterface, if set to a non-zero value, will force character-mode for the dialog and status window
displays, even in a GUI environment. The status window display affected is only the internal version
used when native sockets are utilized, not the status window displayed by the mailcall.exe mailer.

dat.logdata, if set to a non-zero value, and if the dat.logfile$ is defined, and if a native socket is in use,
will cause the mail submission file data to be logged to the log file specified in dat.logfile$. The default
behavior is to only log SMTP conversation information and suppress the message data.

errmsg$ will contain the text of an error message, if one occurs.

UnForm Notes: When UnForm is running on a UNIX system, there is no usable terminal device
associated with it, even if run from the command line. Therefore, the user interface options (such as
dat.dialog=1) of MailCall are not available. This is not the case on a Windows installation, so long as
the server is running as an application rather than a service. Note however, that any user interface
presented occurs where the UnForm server is running, not necessarily where the client runs.

UnForm Version 7.0 267

HTML OUTPUT

UnForm provides an optional capability to produce HTML files from reports, using a processing engine
that is similar to that used for laser printer output. Using this capability, users can convert their standard
text-based reports into HTML documents, which are suitable for viewing with Web browsers such as
Netscape Navigator and Communicator, and Microsoft Internet Explorer.

Reports can be converted in real-time, as part of a CGI or ASP procedure that responds to a browser
request to generate a report, then format it as HTML. Alternatively, reports can be converted with a
periodic batch process, such as a nightly procedure that produces various reports, then converts them all
to HTML for viewing the next day.

Even without a rule set, UnForm can streamline text reports by producing plain text pages with

horizontal rules at the end of each page. These are constructed using HTML templates, so standard
company headers and footers can be applied even to reports that are not enhanced via a rule set.

UnForm Version 7.0 268

CREATING HTML

UnForm will create HTML output if you specify "-p html" on the command line. Given this parameter,
and with no "-f rulefile™ parameter, UnForm will look for the "html.rul” file rather than the default
"unform.rul" file used for printer output.

By default, the HTML output is generated to standard output (on UNIX only), but it is normally
preferable to specify an output file, such as "-o /usr/internet/docs/reports/aging™. UnForm can then build
the reports with varying styles in stages, and a browser can view interim results as soon as the first page
is generated. UnForm will add a ".htm" extension automatically to the output file. UnForm will also
create additional files depending on the style of the report. For example, if a table of contents is
generated as a separate document, then the base file (aging.htm in the above example) will be the table
of contents, and additional files will be generated for the pages of the report (aging.page.htm).

A sample command, therefore, might look like this:
unform -i aging.txt -o /usr/internet/docs/reports/aging -p html -f ourhtml.rul

As HTML structure is very different from that of laser printers PCL, HTML rule sets are very different
from printer rule sets. UnForm uses HTML table structures to format pages. These structures have a
defined hierarchy of rows, cells, and data, with attributes applied to either cells or data. HTML rule sets
follow this structure in that you define rows, then within rows you define cells, and then within cells you
define the attributes of the cell and text.

The HTML output that UnForm produces can be in one of several styles. The rule set options used to
trigger the style are shown in parentheses:

e The simplest form is that of one document with all the pages sequentially created as tables. If no
output file is specified (-o filename), this is what UnForm will produce regardless of any style
options you specify.

e The output can be produced in one file, with a table of contents at the top of the file (toc=y or toc=l,
multipage=n). As each page is generated and appended to the file, the table of contents is updated
and inserted at the top. The table of contents consists of descriptions linked to the individual pages.
The descriptions default to "Page number n*, but can be created in page code blocks. Additionally,
the table of contents can be created as a vertical column (toc=y), or as a bullet list (toc=I).

e The output can be produced in multiple files (multipage=y), with the table of contents being the
primary one, with links to each page as a separate HTML document.

e The output can be produced as frames (frame=y), with the table of contents in one frame, and pages
in the other. The target pages can be stored in a single file, multi-page document, or with each page
in an individual file.

Note that all these options but the first require that a table of contents be maintained as each page is

generated. In order to construct an updated document as each page is generated, UnForm must generate
temporary files with which to build the HTML required. The filename specified by the "-0" option is re-

UnForm Version 7.0 269

created as each page is completed. Therefore, if standard output is generated rather than output files,
only the first style can be produced.

This interim generation of files means that the HTML output can be viewed as soon as the first page is
generated. This can be very helpful when large reports are being formatted in real-time.

UnForm Version 7.0 270

HTML CONFIGURATION

When generating HTML documents, UnForm uses several configuration elements to structure the
output. Most of these are created in UnForm's parameter file, which is named "ufparam.txt”. Note that
you can create a custom parameter file for your site that will not be overwritten during an update of
UnForm by copying "ufparam.txt” to "ufparam.txc”. Then make any changes to the custom version.

A section in the configuration file headed by "[html]" controls HTML configuration. It will look like
this:

[html]

page=page.htm

toc=toc.htm

both=both.htm

frame=frame.htm

pagenum=Page number

imagelib=

imageurl=

complete=Report Complete

incomplete=Report not complete (reload page to view again)

The following table describes each parameter:

Element Description

page=filename These elements point to HTML template files in
toc=filename UnForm's home directory. These files are used by
both=filename UnForm based on the style of output being generated.

frame=filename
To create custom templates for your site, you should
copy each file to some other name, modify the file
names identified in these four elements, and edit the
templates for your needs.

See "HTML OUTPUT TEMPLATES", below, for more
information.

colwidth=text The default column cell width is text. This can be a
pixel value, such as "colwidth=9", or any other value
accepted by a <td width=value> tag in HTML. If no
value is specified, UnForm uses "2em", which indicates
2 half-characters, based on the average width of a
character in the default font. This value can also be
specified for individual reports using the colwidth
keyword in a rule set.

pagenum=text This text is used to generate the default table of contents'
values. A space and the page number follow the text.
imagelib=directory This points to a directory where image files are

UnForm Version 7.0 271

Element

Description

physically stored on disk. If any column definition has
an option indicating it contains image file names, then
the files in the column are searched for first as named,
and then in this directory. If the image can be found,
then the image tag can be generated with width and
height parameters, which normally speeds up the page
rendering speed by the browser.

imageurl=url-prefix

When image tags are generated in a column, the url-
prefix is placed in front of the file name. This allows the
Web server to map the name to a physical location on
the server.

complete=text
incomplete=text

One of these values is placed in the "$status™ global
string at the end of each page, depending on whether the
job is complete or not. You can then place the value in
the HTML template files by embedding the tag
"[$status]” in the template.

UnForm Version 7.0

272

HTML OUTPUT TEMPLATES

As companies develop Internet and Intranet strategies, they should employ standard formatting
conventions to their HTML documents. HTML-formatted reports should likewise follow these
conventions, so UnForm supports the use of HTML template files.

UnForm looks for these files in the UnForm directory, each named in the parameter file "ufparam.txc”
or "ufparam.txt”. UnForm is distributed with a standard parameter file and standard HTML template
files. To customize these for your site, copy "ufparam.txt™ to "ufparam.txc™, then copy the template files
to new names and reference those names in the new "ufparam.txc” file.

The names to use are specified in the "[html]" section of the parameter file, and are coded as
"toc=tocfilename", "page=pagefilename”, "both=bothfilename”, and "frame=framefilename™. In each
of these files, place the text "[$toc]" where the table of contents should be placed, and "[$page]" where
the page table(s) need to be placed. In the case of a frame template, the two markers are used for
placement of URL links to the table of contents document and the page document(s), respectively.

UnForm determines which template files are used based on the style being used for the output. If there
are separate table of contents and page documents, then the tocfilename and pagefilename are both used.
If the table of contents and the pages are in the same document, then the bothfilename is used. This file
should contain both [$toc] and [$page] tags. If frame output is used, then the framefilename is used for
the primary document, and the tocfilename and pagefilename files are used for the target documents.

In addition to the required [$toc] and [$page] tags, you can also reference other pre-defined tags: [$title],
[$date], [$time], and [$status], as well as any global strings that you define in prepage{} or prejob{}
code blocks. These global strings, generated by the STBL() or GBL() functions, are embedded in the
document by placing the name in square brackets anywhere in the template.

One special note: If you wish to customize the date and time masks used by UnForm, set
DATEMASKS and/or TIMEMASKS in the prejob{} code block to the desired format based on the BBx
DATE() function.

The default HTML template for a page (page=filename) looks like this:

<html>

<head>

<title>[stitle]l</title>

</head>

<body bgcolor=#e0elel0>
<h3><center>[Stitle]</center></h3>
<hr>

[Spage]

<hr>

<center><small>

©1997 by Synergetic Data Systems Inc.

All rights reserved.

UnForm Version 7.0 273

</small></center>
</body>
</html>

The default template for an independent table of contents (toc=filename) looks like this:

<html>

<head>
<title>[stitle]l</title>
</head>

<body bgcolor=#e0elel0>
<center>

<h3>Table of Contents</h3>
[stitle]l
</center>

<hr>

[stoc]

<p>[Sstatus]

<hr>

<center><small>

©1997 by Synergetic Data Systems Inc.

All rights reserved.
</small></center>

</body>

</html>

The default template for a combined style (both=filename) looks like this:

<html>

<head>

<title>[Stitlel</title>

</head>

<body bgcolor=#e0elel0>
<h3><center>[Stitle]</center></h3>
<center>[Stoc]</center>

<hr>

[$page]

<hr>

<center><small>

Run on [Sdate] [Stime]l<p>

©1997 by Synergetic Data Systems Inc.

All rights reserved.

</small></center>

</body>

</html>

The default template for a frame style (frame=filename) looks like this:
<html>
<head><title>[Stitlel</title></head>

<frameset cols="25%,*">
<frame name="toc" src="[$toc]">

UnForm Version 7.0 274

<frame name="page" src="[S$Spage]">
</ frameset>
</html>

UnForm Version 7.0 275

HTML RULE SETS

Like PCL rule sets, HTML rule sets are stored in a text file. Each set is headed by a unique name in
square brackets:

[AgingReport]
keywords...

UnForm selects a rule set to use based on either the "-r ruleset” command line option, or detect
keywords in each rule set. Detect keywords cause UnForm to scan the first page of input, then search
for a match where all detect keyword(s) for a given rule set match the contents of the page.

Once arule set is selected, UnForm begins processing each page of text using the rules specified. Each
page is first stripped of any PCL escape sequences so that just text remains, then the array of text rows is
converted to HTML based on the rules. This HTML is then placed in the output according to the style
of output defined by the rule set.

If no rule set is selected, then UnForm will process each page as plain text, using HTML <pre> and
</pre> tags, with horizontal rules between pages (where form-feeds occur in the input).

The following keywords are identical in use and function with printer rule sets:

e cols

e const
e (detect
e Dpage
e TOWS

The hline and vline keywords are identical, except that they always perform an erase of the horizontal
and vertical lines found.

Keywords unique to HTML generation are defined on the following pages.

UnForm Version 7.0 276

BORDER

Syntax
border=value

Description

The tables generated by UnForm for each page will normally have borders, and will therefore set the
table border option to 1: <table border=1 ...>. If you would prefer a different border setting, define it
with this keyword.

See also the otheropt and width keywords.

UnForm Version 7.0 277

COLDEF

Syntax

1. [coldef | ccoldef] col, cols, options
{ code block }

2. coldef "text | ~regexpr", coloffset, cols, options
{ code block }

3. coldef "text | ~regexpr"”, coloffset, "to-text | ~to-regexpr", to-coloffset options
{ code block }

Syntax 1 defines an absolute column region. coldef 30,21 for example, would define a column region
from column 30 for 21 columns (30-50). If the "ccoldef" syntax is used, then col is the starting column,
and cols is the ending column. ccoldef 30,50 would define the same region as above.

Syntax 2 defines a region based on a search for a starting point. For each text value or regexpr (regular
expression) found, the region will begin at the column coloffset from the point found, and extend for
cols columns. For example, coldef **Customer total*,-1,52 will create the region from 1 column before
the occurrence of "Customer total"”, and extend the region for 52 columns.

Syntax 3 defines the region based on two searches, one to find the starting column, one to find the
ending column to the right of the starting point. In both cases, the column position is adjusted for the
offset. coldef ""Current™,-1,""30-Days",-1 would define a region starting one column before the word
"Current"”, extending to one column before the word "30-Days". If just the first string is found, then all
columns from there to the last are specified. If just the last string is found, then all columns from the
first through there are specified. For this reason, be sure that any absolute column regions are specified
first.

Description

Column definitions are used to define columns within a row definition. Each column definition
becomes a table cell (<td>...</td>), with each row in the column being separated by a line break (
).
There can be up to 255 column definitions within any given row definition. Any given column will be
formatted based on the first coldef keyword that applies to it. Columns not so defined will be displayed
as mono-spaced text, using the HTML <pre> and </pre> tags.

Each column definition can define attributes that will apply to the text and cell formatting, and

optionally can have a code block associated with it to add custom Business Basic coding to the data in
the column.

UnForm Version 7.0 278

Options are comma-separated lists of words and parameters. The options available in the column

definition include:

Option

How it gets applied

bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as an
#rrggbb hexadecimal value or as a color name supported
by the target browser, such as red, blue, white, etc..

blink

Text gets <blink> attribute.

bold

Text gets attribute.

bottom, top, middle

Cell gets "valign=value" attribute to control vertical
justification. The default is "top".

center, left, right

Cell gets "align=value" attribute to control horizontal
justification. The default is "left".

color=#rgb, Text gets attribute. The color can be

color=color expressed as a #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc..

font=font Text gets attribute. Several modern

browsers support this, though the font typeface selected
may not be available on all clients.

hdr=html text

The top of the column gets the html text, followed by a line
break
tag. Use this option to replace top of page
column headers with "in cell" column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined with hdr, gets these values
in its <td hdrtd>hdron hdr value hdroff</td> structure. Be
sure to turn off any hdron text HTML tags in hdroff text.

italic

Text gets <i> attribute.

image

Text is assumed to be file names that are image files, and
gets treated as an tag. The ufparam.txci|t file values
for imagelib and imageurl are used for image processing.
The imagelib value is used to locate files on the web
server's file system in order to calculate width and height
values (.gif and .jpg files only.) The imageurl value is
prefixed to the report data when constructing the .

Itrim, rtrim, trim

These three mutually exclusive options will cause UnForm
to left, right, or left and right trim the text of the column
when generating the HTML cell text. By default, any
spaces in the data for the cell remain in the output. Use of
this option may save some disk storage space and
document transmission time.

noencode

If this option is present, then the text is not encoded for
HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

UnForm Version 7.0

279

Option How it gets applied

otheropt=options The table cell gets additional attributes not otherwise
specified by the other options.

size=n Text gets attribute. Size ranges from 1to 7,
with 3 being considered a "normal” size.

suppress If this word is present, then column data gets set to null.

underline Text gets <u> attribute.

Code blocks are optional definitions associated with any given column definition. With a code block, it
is possible to manipulate the text of each row in the column. A typical use of this capability might be to
convert the plain text to hyperlinks, so that a column of part numbers could be linked to pages in a
catalog, for example. Code blocks begin just after the opening brace "{", can extend as many lines as
required, and end with a closing brace "}".

The code block is executed for each row of the column. As the code starts, the following variables can
be used:

Variable Description

attr.align$ The attr$ variable is a string template that defines the
attr.bgcolor$ attributes to apply to the text or cell. These values match
attr.blink those defined above in the Options. Numeric values can be
attr.bold set to O (false) or 1 (true). String values can be set to any
attr.color$ valid value for that attribute.

attr.font$

attr.italic

attr.otheropt$

attr.size$

attr.underline

attr.valign$

colofs The column offset from the left edge of the text. If the

column region is from column 21 through 40, then colofs
will be 21. This should be treated as a read-only value.

cols The number of columns in the region. Read only.

row The row number within the current region, from 1 through
the last row in the region. With each execution of the
subroutine, the row will increase by 1. Read only.

row$ The text of the current row within the region. This can be
manipulated by the code.
rowofs The position of the current row, relative to the whole page.

If you need to refer to data in some other column of the
current row, use rowofs. Read-only.

UnForm Version 7.0 280

Functions available for your use, in addition to any intrinsic Business Basic functions, include:

Function

Description

get(col,row,cols)

Returns text from the page, given the column, row, and
cols parameters.

htmencode(text$)

Returns text$ after converting HTML entities into
displayable versions.

set(col,row,cols,text
$)

Sets text$ into the page at the given column, row, and
columns.

urlencode(text$)

Returns text$ after URL encoding to make it suitable for
inclusion in a hyperlink.

UnForm Version 7.0

281

COLWIDTH

Syntax

colwidth=text

Description

When UnForm generates a table for each page of a document, it defines a standard column cell width so
that text that lines up vertically in the report will remain lined up in the HTML version. UnForm
generates an initial single row of individual cells, using text as the cell width, as used in the HTML tag

"<td width=text>"".

If a text value, such as a pixel count or other valid HTML cell width is specified, then UnForm will use
that value when defining the initial column cell sizes for each page.

UnForm Version 7.0 282

FRAME

Syntax
frame=y | yes | n| no
Description

The frame keyword can be used in conjunction with the multipage keyword to control the presentation
of the report. Without these options, UnForm will produce a single file (named with the output
keyword or —o command line option, or to stdout), containing an HTML table for each page of output
from the source file. With the multipage keyword, UnForm will produce unique files for each page of
output, plus a table of contents page (whose format is controlled by the toc keyword). If frame is set to
"y" or "yes", then an additional frame file is created for the browser to view the table of contents
constantly while viewing the report pages.

The output filename generated is for the frame file if frame is set to "y" or "yes", and the table of
contents file if frame is not present or is set to any other value.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 7.0 283

HDRON, HDROFF, HDRTD

Syntax

hdron=value
hdroff=value
hdrtd=value

Description

When a coldef hdr=text option is present, UnForm will add text to the top of the column, in a separate
cell. In order to make a column-heading stand out, it may be desirable to give it attributes that are
distinct from the column text. These keywords define HTML text attributes to add before and after any
column header. hdrtd applies <td value> to the cell tag, while hdron and hdroff apply to the heading
text. Values for individual row groups can be specified in the rowdef or coldef keywords.

For example, hdron=<small> and hdroff=</small> would make column headings small and
bold.

Be sure to close any tags in the hdron value with corresponding tags in the hdroff variable.

UnForm Version 7.0 284

LOAD

Syntax

load filename

Description

The load keyword is used to load a secondary text file into the rule file at parsing time, at the position of
the load keyword. This provides the ability to maintain separate text files for the definitions, grouped in
any manner desired. For example, a common set of options for all reports could be defined in a second

file, and each report could reference that file.

UnForm will try to open the file first as named, then in the UnForm directory if it is not found. Note
that the prefix setting, if present, in UnForm'’s config.unf file can be used to affect file searching.

Example:

[Reportl]
load "stdoptions.txt"

UnForm Version 7.0 285

MULTIPAGE

Syntax

multipage=y | yes

Description

If multipage is set to "y" or "yes", UnForm will generate a different document file for each page of
output. The pages will be named filename.pagenum.htm, with pagenum being the sequential page

number of the report.

A table of contents will automatically be generated as well, with each link in the table of contents

referencing the proper document name. The table of contents file will be named one of two names:

filename.toc.htm if a frame structure is being generated, or filename.htm if not. When no frame is
generated, then the table of contents document becomes the base document for the output.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 7.0

286

NULLROW

Syntax

nullrow=y | yes

Description

If this value is set to "y" or "yes", UnForm will print undefined row sets as mono-spaced text, using

HTML <pre> and </pre> tags. By default, UnForm will suppress any rows that have not been allocated
with rowdef keywords.

UnForm Version 7.0 287

OUTPUT

Syntax
output "filename”
Description

If no "-o filename" is specified on the command line, UnForm will use the file filename specified here.
Use this keyword to specify a default output location for any given report.

UnForm automatically adds a ".htm" extension to filename.

UnForm Version 7.0 288

OTHEROPT

Syntax

otheropt "table-options™

Description

When UnForm generates a table for each page of the document, it establishes border and width options
for the table tag: <table border=border width=width>. If additional options are desired, specify them
with this keyword. If present, the table tag is generated like this:

<table border=border width=width table-options>

See also the border and width keywords.

UnForm Version 7.0 289

PAGESEP

Syntax

pagesep "html code”

Description

If a single document is generated for all pages of output (multipage is not set to "y" or "yes"), then
UnForm will place a paragraph tag (<p>) between each page. If something other than a paragraph tag is

desired, then specify the HTML code in the pagesep keyword.

The pagesep value can contain global string values generated from code blocks by referencing the string
value name inside square brackets.

For example: pagesep "'<p><hr>[pagehdr]™ would generate a paragraph tag plus a horizontal rule,

followed by the value in the global string "pagehdr", defined with the STBL() function in a prepage{} or
prejob{} code block.

UnForm Version 7.0 290

PREJOB, PREPAGE, POSTJOB, POSTPAGE

Syntax

prejob | postjob | prepage | postpage {
code block

¥

Note: the opening brace "{" needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the document generation process.
They represent four different subroutines that UnForm executes at specific points during processing.
The code block can be an arbitrary number of Business Basic statements; the total number of statements
in all code blocks can be about 6,000 (or less, depending on program size limits imposed by the run-time
environment).

e prejob executes after the rule set has been read, and after the first page is read, but before any
printing takes place. Use this code to open files or databases, prepare SQL statements or string
templates, create user-defined functions, and initialize job variables.

e postjob executes after the last page has been printed. Use this to close out your logic, such as
adding totals to log reports. There is no need to close files, since UnForm will RELEASE Business
Basic.

e prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to
apply to all copies.

e postpage executes after the last copy of each page has printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart's content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page.

You may use the following variables and functions in your code block:

o text$[all] is a one-dimensional array of the text for the page. For example, text$[2] is the second
line of the page.

e mid(argl$,arg2,arg3) (or fnmid$(argl$,arg2,argl)) is a function that safely returns a substring
without generating an error 47 if the value in argl$ isn't long enough to accommodate position arg2
and length arg3.

UnForm Version 7.0 291

e get(col,row,length) (or fnget$(col,row,length)) is a function that safely returns text from the
text$[all] array, without substring or array out-of-bounds errors.

e set(col,row,length,value$) (or fnset$(col,row,length,value$)) is a function that places value$ in the
text$[all] array at the place indicated. It returns value$.

e err=next may be used for any err=label option in any function or statement, in order to force
UnForm's error trapping to ignore an error. You may, of course, name your own err=label if
desired.

When using variables and line labels, you should avoid using any values that begin with "UF_".
UnForm reserves all such variables and labels for its own use. You may use a backslash (\) at the end of
a line to continue the statement on the next line. Lines prefixed with "#" are not added to the code.

A discussion of programming in Business Basic is outside of the scope of this manual. If your needs
require programming, then it would be advisable to hire a professional Business Basic programmer,
acquire training for a technical member of your staff, or contract with SDSI for your needs.

Column definitions can also have code blocks, which are executed as each row of a column definition is
generated. See the coldef keyword for more information.

UnForm Version 7.0 292

ROWDEF

Syntax

1. [rowdef | crowdef] row, rows, options
{ code block }

2. rowdef "text | ~regexpr", rowoffset, rows, options
{ code block }

3. rowdef "text | ~regexpr", rowoffset, "to-text | ~to-regexpr", to-rowoffset options
{ code block }

Syntax 1 defines an absolute row region. rowdef 5,3 for example, would define a row region starting
with row 5, and extending 3 rows down (5-7). If the "crowdef" format is used, then row is the starting
row, and rows is the ending row. crowdef 5,7 would define the same region as rowdef 5,3.

Syntax 2 defines a region based on a search for a starting row that contains the text or matches the
regular expression. For each text value or regexpr found, the region will begin at the row rowoffset from
the point found, and extend for rows rows. For example, rowdef ""Customer total**,0,1 will create a
region from each row containing "Customer total" (O offset is that row), and extending for 1 row (just
that row).

Syntax 3 defines the region based on two searches, one to find the first row, one to find the ending row
below the starting row. In both cases, the row used for the region is adjusted for the offset. rowdef
""Customer:",1,""Customer:*,-1 would define a region between each occurrence of the text
"Customer:". If just the first string is found, then all rows from there to the last are specified. If just the
last string is found, then all rows from the first through there are specified. For this reason, be sure that
any absolute regions are specified first.

Under format 3, if the last string is not found, UnForm will continue that row definition on the page
following the first unallocated row at the time this row definition is evaluated on that page.

Description

Row definitions are used to define sets of rows for which a given group of column definitions would
apply. Each row definition defines a group of rows that will be presented within a single table row (<tr>
... </tr>). Under any given row definition, place the column definitions (coldef keywords) that will be
used to format the rows.

For example, an A/R Aging Report might contain a report heading, column headings, one or more
customer headings, and, under each customer heading, one or more detail lines. At the end of the detail
lines would be customer totals. This report would have five row definitions, for each type of row:
report heading, column heading, customer headings, detail lines, and totals. Each of these types of rows

UnForm Version 7.0 293

will have its own set of column groups (or in some cases, no column groups at all, allowing simple

mono-spaced presentation.)

There can be up to 255 row definitions within any rule set.

Each row definition can define attributes that will become defaults for the text and cell formatting of all

the column definitions. Additionally, row definitions can define an option called "suppress", which
causes UnForm to suppress the display of the row region. A comma separates each option.

Option

How it gets applied

bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as an
#rrggbb hexadecimal value or as a color name supported
by the target browser, such as red, blue, white, etc..

blink

Text gets <blink> attribute.

bold

Text gets attribute.

bottom, top, middle

Cell gets "valign=value" attribute to control vertical
justification. The default is "top".

center, left, right

Cell gets "align=value™ attribute to control horizontal
justification. The default is "left"

color=#rgb, Text gets attribute. The color can be

color=color expressed as an #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc..

font=font Text gets attribute. This is supported by

several modern browsers, though the font typeface selected
may not be available on all browser clients.

hdr=html text

The top of the column gets the html text, followed by a line
break
tag. Use this option to replace top of page
column headers with "in cell" column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined, gets placed in a cell with
<td> attributes specified hdrtd text, and text attributes
hdron text and hdroff text. Be sure to turn off any hdron
text HTML tags in hdroff text.

italic

Text gets <i> attribute.

noencode

If this option is present, then the text is not encoded for
HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

otheropt=options

The table cell gets additional attributes not otherwise
specified by the other options.

size=n Text gets attribute. Sizes range from 1to 7,
with 3 being considered a "normal” size.

suppress The rows are not displayed.

tr Each row in the row group gets a <tr> tag, ensuring that

column definitions, even if they contain data values of

UnForm Version 7.0

294

Option How it gets applied
varying height, will remain horizontally contiguous. If the
cells contain only text, this is generally not required, but if
some cells contain images, this keyword will likely be
required.

underline Text gets <u> attribute.

UnForm Version 7.0

295

TITLE

Syntax
title "title text"
Description

The title for any report can be defined in the rule set with this keyword. Once defined, anywhere in
HTML output templates that the tag "[$title]" is placed, this text will be substituted.

UnForm Version 7.0 296

TOC

Syntax

toc=y | yes | li | list | sh | short

Description

If this keyword is set to "y" or "yes", UnForm will generate a simple table of contents by constructing
hyperlinks to each page generated. The hyperlinks are placed either at the top of the document, in a
separate main document, or in a document referred to as the table of contents in a frame.

The following templates use a table of contents. Templates refer to files in the UnForm directory, and
are referenced in the parameter file under the "[html]" section: "both="and "toc=". In each case, the
placement of the table of contents is based on the placement of the tag "[$toc]" within the template file.
The text displayed for each hyperlink is generated from the "pagenum=" item of the "[html]" section of
the parameter file (ufparam.txc or ufparam.txt.) This text can also be generated by Business Basic code
in the prepage{} or postpage{} code blocks, by setting the string variable "toc$" to the value desired.

If the keyword is set to "li" or "list", then the hyperlinks are created within an HTML unordered list
(...), and will normally be displayed as a bullet list.

If the keyword is set to "s", "sh", or "short", then the table of contents links consist of just the pagenum
descriptor followed by each page number, with no line breaks or bullets. In this case, any code that sets
the value of toc$ is ignored.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 7.0 297

WIDTH

Syntax

width=value

Description

The tables generated by UnForm for each page will normally occupy the entire width of the page, and
will therefore set the table width to 100%: <table width=100% ...>. If you would prefer a different
width setting, define it with this keyword. Be sure that if the value is a percentage of the screen, it has a

trailing "%".

See also the otheropt and border keywords.

UnForm Version 7.0 298

SAMPLE HTML RULE SET

Below are sample rule sets defined in the sample rule file, samphtml.rul. The sample text input files
used by UnForm for the PCL output examples are redefined here for HTML. Comments are
interspersed in the rule sets to help clarify which keywords perform which tasks.

AGING REPORT SAMPLE

To produce this aging report sample to a file, execute the following command:
uf70c -i sample3.txt -o aging.htm -p html —f samphtml.rul

You can substitute a different path/file name for "aging" to produce the HTML file elsewhere, such as in
the HTML document tree of your Web server.

The form is called "aging" to distinguish it from other rule sets. If the "-r aging™ option is used on the
command line, then this set will be used.

[aging]

A detect statement identifies a report as the one defined by this rule set. If no "-r ruleset™ option is used
on the command line, then this detect statement will be evaluated. If the text "Detail Aging"” appears in
any column on row 2, this rule set is used.

detect 0,2, "Detail Aging"

The HTML output will produce 132 columns and 66 rows per page.

cols 132
rows 66

Any text consisting of 3 or more dashes will be erased. This removes all the dashed underlines at
customer totals. There are other ways to accomplish this, including defining a row set and using the
suppress option, or using a prepage{} code block to erase such text from the text$[] array.

hline "---"

\ The title used in HTML output for this report will be "Aging Report".

title "Aging Report"

If this line were not commented out (with the #), then anytime this rule set was used and no "-o0
filename™ was present on the command line, the output would go to "/tmp/aging.htm."

#output "/tmp/aging"

UnForm Version 7.0 299

This report will be generated in multiple files (one per page), with a table of contents page, and with an
HTML frame construct.

multipage=y
toc=y
frame=y

Between each page will be an HTML <p> tag (a paragraph separator). Any HTML text could be
supplied, including references to global strings inside square brackets ([variablename]). The
hdron/hdroff keywords supply HTML codes to place before and after any column definition headings,
defined with the hdr=text option in the coldef and rowdef keywords.

pagesep <p>
hdron=<i>
hdroff=</1>

This rowdef keyword defines a row set from row 1 for 5 rows. All column definitions within this row
will default to a background color RGB hex value of FFEOEO (lots of red, high green and blue content).

rowdef 1,5,bgcolor=#ffele0

For the above row set, there are three column sets: 1 through 10, 11 through 110, and 111 through 132.
The columns are left, center, and right justified, respectively. Otherwise, except for the background
color, the browser will use its default values for displaying the data.

coldef 1,10,1left
coldef 11,100, center
coldef 111,22,right

This row definition causes UnForm to suppress display of rows 6, 7, and 8 (the column heading
information). The rule set will define the column headers as necessary in other row sets.

rowdef 6,3, suppress

Each customer has a heading line, distinguished by the occurrence of a phone number in those rows.
The initial quoted value "~\(...-...-....\)" instructs UnForm to search for a regular expression match that
looks like a U.S. phone number in parentheses. From any and all such rows, it will start at 0 rows up or
down, and continue for 1 row. This defines those and only those rows that contain the phone numbers.
Columns defined for those rows will be bold, with blue text on a white background. As no columns are
defined under this row definition, UnForm allocates one column set the full 132 columns wide, and
applies the row defaults to the text.

Customer header
rowdef "~\(...-...-....\)",0,1,bold,color #0000ff,bgcolor #ffffff

The invoice detail lines represent the most complicated of the row definitions, as there are numerous
columns with two different formats. We define constants for the two formats (left and right justification
being the only difference.) Then the rows are defined as any rows that contain a date structure of 2
characters, a slash, 2 characters, a slash, and 2 more characters. Note that even though some heading

UnForm Version 7.0 300

rows have this structure, those rows have already been allocated by prior row definitions and won't
confuse things here. UnForm searches for any row with a date. Then starting from that row (row offset
of 0), it searches for a row that contains 5 dashes. If such a row is found, then the row set goes through
the row before (row offset -1) the dashes. 1If no such row is found, then the row set goes through the last
row on the page.

Invoice lines

const LEFT="bgcolor=#e8e8e8,color=black"

const RIGHT="bgcolor=#e8e8e8,color=black,right"
rowdef "~../../..",0,"———-—- v, -1

Each invoice line is made up of 13 columns of information. Each has been defined by the ccoldef
keyword by starting and ending column values. Additionally, each is given a header value that will
appear at the top of the column, and a constant that references other attributes defined earlier in the
rule set.

ccoldef 1,10,hdr="Invoice",LEFT

ccoldef 11,20,hdr="Due Date",LEFT

ccoldef 21,31,hdr="PO Number",LEFT

ccoldef 32,39,hdr="0rd Number", LEFT

ccoldef 40,45,hdr="Terms",LEFT

ccoldef 46,52, hdr="Type",LEFT

ccoldef 53,64,hdr="Future", RIGHT

ccoldef 65,75,hdr="Current", RIGHT

ccoldef 76,86,hdr="30 Days",RIGHT

ccoldef 87,97,hdr="60 Days",RIGHT

ccoldef 98,108,hdr="90 Days",RIGHT, color=red
ccoldef 109,119,hdr="120 Days",color=red, RIGHT
ccoldef 120,132,hdr="Balance",right,bold, RIGHT

The customer totals occur just below the row of dashes at the end of each customer's invoices. This row
definition therefore searches for any rows containing 5 dashes, then starts 1 row down, and continues
for just 1 row.

Customer totals
rowdef "----- ", 1,1

The first 52 columns make up one column set. The report provides no text, so we include a code block
for this column that sets row$ to "Customer Totals:". Note that if this row set contained more than a
single row, we could say 'if row=1 then row$="Customer Totals:'. The remaining column sets just
apply right justification to the column values.

ccoldef 1,52,right
{row$="Customer Totals:"}
ccoldef 53,64,right
ccoldef 65,75,right
ccoldef 76,86, right
ccoldef 87,97,right
ccoldef 98,108, right

UnForm Version 7.0 301

ccoldef 109,119,right
ccoldef 120,132,bold,right

UnForm Version 7.0 302

INDEX

[tCPPOrtS] SECLION ...cvvvececvcicce e 34
30 day demo activation.........ccccccevevennvneecre e 42
AACTOSS ..ottt e et e e e eee e e et e e e ttee e e sbeeeeeetaeeeenes 89
ACHIVALION KBYS ...oviieiiieiieee et 42
AdVaNCeA.rUL........c.cooviieicicec e 196
ALIS TINES .o 36
ALGNMENT ... 134, 180
ANNOTALE.......iiieice e 90
Application integration ... 40
AFCHIVE oot e 92
ArCRIVING o 55, 66
AACH oo 95
AULNOT .ot 97
Barcode

PCL, PDF ..ottt 98

=10 - W TRt 101
DBPAh .o 28
BBx

COOE DIOCKS ..ot 235
BBX iNtegration.........ccoceovvireiineneieie s 36
bbxread fUNCLIONcccooviiiiiece e, 245
BOXIEAA(). v vt 28
BN oo s 104
[=70] o R 106
BOX oo 108
BOXE e 111
Business BASIC

COOE DIOCKS ..ot 235
CaSE-CONVEISION......eeciriieirieeeteeeitieeeteeeereeeereeesreeesteeenrae s 134
Characters

-LEeStPr OPLION ... 53
Check Printingccoceoeerereieneee e 160
(011 (od (SO 114
client-server architeCtureccoceevveeeceecive e 20
Code blocks

L 1Y OSSN 236

BASIC fUNCLIONS......oeeiviiiiei e 255

EITOT COUBS ..vviivieitii ettt be e 261

NUMDBET AAtA.......cccviiiiiriicriccrecceee e 237

(0] 0L = U0 USSR 237

precopy, etc. COMMANGS..........ccoervrereneerenecrieiene 169

ProgrammMing.......ccoeoveereeeineneeseseese e 235

special fUNCLIONScoeiiiiii e 245

special variables..........cccocviiiiv i, 241

SEHNG dALA....veiceeieece e 237

VaNabIES ... 236
(00] | F- 11 o] RSP SUUPOUR 119
Color

bBOX COMMAN........cooviiiie e 109

font commandccoeeeevviicei i 134

teXt COMMAND.......cveeiieiiie e 180

Color images

UnForm Version 7.0

1LV o] o) (o] H 48
[0 -3 USRI 116
Command line length

“Z OPHION i 54
Command 1ine OPtioNS.......ccccevvviereeeeeeere e 46
Commands

2T (011U PP PPPRRN 89

ANNOTALE. ... 90

AFCHIVE .oiiiicicce bbb 92

oL =10 o [95

AULNOT L 97

barcode, PCL and PDFcccccooveiiiiiieecec e 98

barcode, Zebra........cccooveviiviiiiiicc 101

BN e 104

DO .., 106

010 TR 108

DOXE et 111

CITCIE 1o 114

(010 [116

COMPIESS ..ttt et be et sbeeseeenee e 117

(o0 1Y SRS 118

(070] o[- 119

CPH ettt 120

CrOSSNAITecveicciieccee e 121

(0 [=] (=11 SO 122

HOWN 1ttt 124

APT et 125

AUPIEX i 128

EMAIL oo 129

Lo - SRR 131

FIXEATONT....eee i 132

L (0] 1 OSSO 133

gs 136

REINE o 137

RSNITE ..o 138

1T COPY cvii 139

IFAMIVED (e 140

1110 S 142

L= To S 146

(1L 106

JAVASCIIPE ..t 149

KEYWOIAS.....cuviiiiiiiecie et 150

1aNASCAPE ...vvvevvieeeeiee e 151

Gt 106

HINE oo 153

Ipi 155

MACTO 1veevveeiteeectreesreestre e st e e stre e steeesare e s taeesreeesteeenreeens 156

MAFGIN et 158

MEITE oottt 159

0] [PSSRSO 160

IMNOVE ©ooeitieeteeeetee et e et et e be e be e ebe e s beesbe e sbeesnaee e 161

NOTEXT ...ttt 163

OULPUL .. 165
PAGE ...ttt e 166
PAPEE ettt re e 167
PCOPIES 1ttt 119
POIIAIL.....ceeceieeiciie e 168
PIECOPY eenvienrienriniiesieesteesieesteeste e sie s sreesreenneenne e 169
PIOLECT ..t 171
FOWS. .ttt ettt ettt ettt e et e e 172
SNAUE ..t 173
SNITE e 175
SUBJECE .ot 176
SYMSEL ..o 177
TEXT e 178
TIEIE e 184
EFAY 1ottt 185
UNAEITINE ..o 106
VHNE 1o e 188
VSHIFL o 189
F{vl0] o 1= SRS 190
ZOAAIKNESS. ...t 191
ZSPEEU .. 192
COMPIESS ... 117
CONCEPLS ..ottt 61
ConfiguIAtioN.....cvcieeccce e 28
(070 0] RSP SPPRR 118
Content-based rule fileS........ccooviiiiiiincee, 88
COPIBS ..ttt 119
L000] 0}V o] [0 To] SRS 139
CPl e 120
CrOSSN@IT ...t 121
Crosshair pattern
O o] o1 o] RS 54
CUL FUNCLION ..o 246
DBLECT. ..t 122
Document imaging CONVErSIONccoceverereeieeneenieneens 31
DOWN L 124
DD ettt e 125
DSN_SAMPIE ..o 126
DUPIEX .ttt 128
with an attachment ..o, 95
EMail. ..o 129
command line optionS.........ccocevveveinencisieneee 47
CONTIGUIALION ... 263
email code block function..........c.ccocoeiiiciincnenn, 246
Emergency activationccccccceveveiienvsinsinceeiee e 42
ENCIYPLION .o 171
BN T 139
ENV FUNCHION ... 247
EraSE ..o 131
ErrOr COUES. ..o 261
EXEC FUNCHION. ..o 247
FIt o WIdth....cocicececce e 134
FIXedfont.. ..o 132
FIOW Of ProCeSSINg......cvvvrvireiereere e se e se e 58

UnForm Version 7.0

FONL. . 133
Gt FUNCHIONcui i 247
(€] 0] 1103 g o) SR 31
Graphical shading........c.ccoeviiiiiiiniice 47,136
Greenbar OPLION........cccoveiieieere e 47
Grid drawing.......cccooeiiiiiiee s 109
Gs136
HIINE oo 137
HP JEtDIFECL.......eoiieiieeee e s 34
HP/GL

-NONPGL OPLION....cviie e 49
HSNIfE ..o 138
HTML AFIVEE oo 270
HTML format

e W] 011 o] PSSR 50
1T COPY e 139
I APIVE e 140
IMAGE . 142
Image AIChEMY ... 31
Image conversion and SCaling.........ccccevveverierienesennen, 144
IMage MagiCKcoviiiriiiiee e 31
TMAGES vttt 146
Images

scaling and CONVEISION........ccccvveeeeieeieree e 31
Input file

S OPLION...ciic e 48
Installation

CHIENES .. 25

CONFIGUIALION......cviiviiiiiic s 28

UNIX CD .ot 21

Unix downloadccoceeeiiiiiinineeee e 23

WINAOWS ..ot 24
Integration with applicationscccccvevvevvvvivceciennenn, 40
IP adUrESSES ..ottt 29
TEALIC . 106
JAVASCIIPE oo e 149
JOD FUNCLIONS ... 250
Job status

-JODS, -MYJODS ... 55
Jobs

job code block functions...........ccccevveveieninicieene, 250
JUSEITICAtION.....cuvi i, 134, 180
KEYWOITS......oviiieiiiieieiiiicee e 150
LaNdSCaPEveiieeiieieie et 151
Landscape orientation

land OpLioNc.cciii 48
Laser format

2P OPLION. . 50
left FUNCLION .o 250
LIBrary oo 28
LICENSING ..ttt 42
LIGNE e 106
JINE e 153
LiNES PEI PAGE vvevvereeveie e sieseeriereente e ste e e eae e 166

-PAgE OPLION ...ovieici e 51

LiNK FIlE oot e e 38

[0 oo 10 To TR USROS 28
lower fUNCLION.......ccoiiieiiic e 251
LOWEI-CASE. ..ottt ittt 134
LPE s 155
MIBCTO... et 156
Macros

WOTKING With ..o 193
Mailcall referenCeccooveveve v 266
MAIlCalLiNT ..o 263
MAFGIN .o s 158
MCUL FUNCHION ..o 251
MIBIGE .o 159
MOEL FUNCLION ..o 251
MICR ...t 160
MId FUNCLION......ooiiicice e 251
MoNO-SPaced teXEc.ccvevereerere e 134,180
MOUNt COMMANGS.......ccveeieierie e 21
MOV ...t 161
NOEEXE .. 163
Order of OpPerations..........ccocvvvvieiveiieicne e 58
Orientation

land OPLioN ..o 48

landscape command...........cccooceveriniiininiee e 151

portrait command...........ccccceveveniinie i 168
OULHINE oot 164
OULPUL ... e 165

20 OPLION ..t 49
Output format

SP OPLION v e 50
PAGE ..o 166
Page length

=PAQE OPLION ..o 51
2 0] S 167
Paper size

=PAPEE OPLION ...t e 51
Parameter passing

SPIM OPLION .o 51
Parse fUNCLIONooviiiiiiiie e 251
Pass-through printing...........ccccoevvvneinincisnecces 53
PCL format

SP OPLION e 50
PCOPIES ...t e 119
PDF

command line OptioNS.........cccvvveiiniiniccieiee e, 51

COMPress COMMANG........ccevvererereie e 117

ENCIYPLION oo 171

keywords commandcccoeriininninene 150

outline command.........ccccereiiiiieniiinee e 164

protect COMMaNd.........ccoovevvevereieie e 171

subject commandccocvevverenerienn e 176

title command.........cooveveveviir i 184
PDF format

SP OPLION .t 50
PEIL... s 20, 25

UnForm Version 7.0

Permanent activationccoceoeiineis s 42
PIECN e 134, 179
POINES ..o 134,179
POMIAIL ..o 168
POSESCIIPT ..ttt 181
PrECOPY ... vttt 169
Process FlOWcovvvriininrse e 58
Programmingcoecevereinennineneese s 235
Proper fUNCLIONcoooiriiiecee e 252
Proportional text............cooerieieniniie e 134, 180
PrOtECL. ... 171
ProvideX

€OdE DIOCKS ...t 235
ProvideX integrationccocooeeiveienene e 38
Regular eXPressions.........cccevveieeeeiesiieieeseseseseseenens 195
Fight FUNCHION ..o.ovecc e, 253
Rounded DOXESccvvviiiieieee e 111
ROWS ...t 172
Rule file

SFOPLION 1 47
RUIE FIlES...ceeeeeeeee et 87

CONEENt-DASEAccveiiiiiee e 88
Rule set

SFOPLION 1o 52
Sample rule files ..., 196
SECUMTY ..t 29
Serial NUMDEIS ..o 42
SErver OPErationccccccveveriereeeeieere e 20, 24
SEt FUNCLION ..o 253
Shade ..o 173
Shaded teXtccoeriiiiieieee e 134, 180
SRt e 175
SIMPIE.IUL ..o 196
SIaVe Printingccocoveeiiiie e 53
SIMTP SEIVET ...ttt 263
Special CharaCters ..o iicieeiceccce e 53
SUD FUNCLION ..o 253
SUBJECE .. 176
Sub-jobs

job code block functions..........cccccevevvvienciciieneenen, 250
SYMDBOI SELS.....vvvvieieeiecce e 134,177, 179

tESEPI OPLION ... 53
SYMSEL . 177
TCP/IP

010 o] o] (o] IS 51

=SEIVEE OPLION ...ttt 52
TCP/IP MONITOT ..ot 34
TOXE ettt 178
TEXESIZES v 134, 179
TIMEOULS ...t s 28,53
THEE o 184
THAY ettt 185
trmM FUNCLION ... 254
UFS variable........ccooei e 242
UF70CINE et 25

305

UF70d OPLIONS ..o 20
UFT00. NI e 28, 31
UF7PLr Print driVErcoviecee e 38
uf7ptr ProvideX print driver........cccccoeveievievvvesn e, 38
UFSBLUP.SN ... 21,23
UNAEITINE ..ot 106
UnForm
client-server architeCture..........occovvevveevevieiee e, 20
CONCEPLS .. 61
INEFOAUCTION ... 10
Unix
CD installationccccevevviiieiiccecce e 21
client installationcocooveviiiii e, 25
download installation...........c.cccceevveviiiii i, 23
MOUNt COMMANGSeoiviiiieeire et 21
SEIVEN OPErAtiON......ccvircieieie e 20

UnForm Version 7.0

UPPEr FUNCLION. ..o 254

UPPEI-CASE ...c.veviieeiieeereie sttt s 134
VariabIBS.....cveecieicee e 241
VIINE ot 188
VSHIft i 189
web browser interface..........coccovvviieiiciecie e, 74
Windows
client installation ..., 25
server installation ..., 24
SEIVEr OPEAtION ...oveviviiiriece e 24
Windows SUPPOIt SEIVET........ccoeviirieiineeesiee 28, 84
ZCOPIES vttt ettt sttt sr e 190
ZAAIKNESS ..ottt 191
Zebra format
5P OPLION ..ttt 50
ZSPEEA . 192
306

	 TABLE OF CONTENTS
	 INTRODUCTION
	 VERSION 7 FEATURES
	DOCUMENT ARCHIVING AND MANAGEMENT
	WINDOWS SUPPORT SERVER
	PDF ENHANCEMENTS
	IMAGES COMMAND
	CIRCLE COMMAND
	LINE COMMAND
	WINDOWS CONSOLE CLIENT
	NEW ZEBRA DRIVER COMMANDS
	PRINTER MODEL SUPPORT
	NEW FUNCTIONS
	BLOCK IF IN CODE BLOCKS
	MISCELLANEOUS ENHANCEMENTS

	 CLIENT-SERVER ARCHITECTURE
	 SERVER INSTALLATION
	 CLIENT INSTALLATION
	 WEB SCRIPT INSTALLATION
	 CONFIGURING THE SERVER
	 CONFIGURING EXTERNAL PROGRAMS
	 TCP/IP MONITOR
	 INTEGRATING UNFORM WITH BBX
	 INTEGRATING UNFORM WITH PROVIDEX
	 INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONS
	 LICENSING
	 UNFORM COMMAND LINE OPTIONS
	 FLOW OF PROCESSING
	 CONCEPTS, PRIMER, AND TIPS
	 DOCUMENT ARCHIVING AND MANAGEMENT
	OVERVIEW
	STRUCTURE DETAILS
	DOCUMENT-LEVEL IDENTIFICATION
	IMAGE-LEVEL IDENTIFICATION
	ADDING UNFORM-GENERATED DOCUMENTS
	USING THE WEB BROWSER INTERFACE
	DIRECT BROWSER ACCESS TO DOCUMENTS
	CUSTOMIZING THE WEB INTERFACE
	USING THE UNFORM CLIENT
	Triggering Archiving of UnForm Jobs
	Adding External Documents
	Document Retrieval
	Document Deletion
	Document Listings
	Importing Documents from sdStor

	UNFORM SCANNING WORKSTATION
	FUNCTIONS RELATED TO ARCHIVING
	BUILDING DEMO ARCHIVE DATA

	 WINDOWS SUPPORT SERVER
	 RULE FILES
	 CONTENT-BASED RULE SETS
	 ACROSS
	 ANNOTATE, CANNOTATE
	 ARCHIVE
	 ATTACH
	 AUTHOR
	 BARCODE (PCL,PDF)
	 BARCODE (ZEBRA)
	 BIN
	 BOJ, BOP, EOJ, EOP
	 BOLD, ITALIC, LIGHT, UNDERLINE
	CBOLD, CITALIC, CLIGHT, CUNDERLINE
	 BOX, CBOX
	 BOXR, CBOXR
	 CIRCLE
	 COLS
	 COMPRESS, NOCOMPRESS
	 CONST, GLOBAL, LOCAL
	 COPIES, PCOPIES
	 CPI
	 CROSSHAIR
	 DETECT
	 DOWN
	 DPI
	 DSN_SAMPLE
	 DUMP
	 DUPLEX
	 EMAIL
	 ERASE, CERASE
	 FIXEDFONT
	 FONT, CFONT
	 GS
	 HLINE
	 HSHIFT
	 IF COPY … END IF
	 IF DRIVER … END IF
	 IF EXPRESSION … END IF
	 IMAGE
	 IMAGES
	 ITALIC
	 JAVASCRIPT
	 KEYWORDS
	 LANDSCAPE, RLANDSCAPE
	 LIGHT
	 LINE
	 LPI
	 MACRO
	 MACROS
	 MARGIN
	 MERGE
	 MICR
	 MOVE, CMOVE
	 NOTEXT
	 OUTLINE
	 OUTPUT
	 PAGE
	 PAPER
	 PORTRAIT, RPORTRAIT
	 PRECOPY, PREDEVICE, PREJOB, PREPAGE
	POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE
	 PROTECT
	 ROWS
	 SHADE, CSHADE
	 SHIFT
	 SUBJECT
	 SYMSET
	 TEXT
	 TITLE
	 TRAY
	 UNDERLINE
	 UNITS
	 VLINE
	 VSHIFT
	 ZCOPIES
	 ZDARKNESS
	 ZSPEED

	 WORKING WITH MACROS
	 REGULAR EXPRESSIONS
	 SAMPLE RULE FILES
	 SIMPLE1 - INVOICE RULE SET (SIMPLE.RUL)
	 SIMPLE2 – INVOICE RULE SET (SIMPLE.RUL)
	 SIMPLE3 – INVOICE RULE SET (SIMPLE.RUL)
	 SIMPLE4 – INVOICE RULE SET (SIMPLE.RUL)
	 INVOICE - INVOICE FOR PRE-PRINTED FORM (ADVANCED.RUL)
	 STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB (ADVANCED.RUL)
	 AGING REPORT - ENHANCED AGING REPORT (ADVANCED.RUL)
	 LABELS – TEXT LABELS TO LASER LABELS (ADVANCED.RUL)
	 132X4 – MULTI-UP, SCALED REPORTING (ADVANCED.RUL)
	 ZEBRA LABEL – ZEBRA(LABEL PRINTER EXAMPLE (ADVANCED.RUL)
	 PDF OUTLINE SAMPLE (ADVANCED.RUL)

	 PROGRAMMING CODE BLOCKS
	 BASIC SYNTAX
	 INTERNAL VARIABLES
	across$
	bin$
	cols$
	copies
	pcopies
	copy
	crosshair$
	down$
	driver$
	duplex$
	gs$
	margin$
	orientation$
	outline$
	output$
	pagenum
	paper$
	rows$
	skip
	text$[all]
	tray$
	uf.xxx$

	 INTERNAL FUNCTIONS
	arrtostr(arr$[all],str$,dlm$)
	bbxread(file$,key$,rec$,errcode)
	clientenv(name$)
	cmtocols(centimeters)
	cmtorows(centimeters)
	cnum(expression)
	count(str$,dlm$)
	countq(str$,dlm$)
	cut(col,row,cols,value$)
	dbconnect(name$,timeout,errmsg$)
	dbexecute(name$, command$, timeout, fdelim$, rdelim$, response$, errmsg$)
	delpage(n)
	docidexists(lib$,doctype$,docid$)
	email(to$, from$, subject$, body$, attach$, cc$, bcc$, otherheaders$, login$, password$,logfile$)
	env(name$)
	err=next
	exec(expression)
	exists(file$)
	get(col,row,cols)
	get(col,row,cols,trim$)
	get(col,row,cols,trim$,page)
	get(col,row,cols,trim)
	get(col,row,cols,trim,page)
	getarc(lib$,doctype$,docid$,subid$, filename$ [,errmsg$])
	getfile(filename$)
	getdocidprop(lib$, doctype$,docid$, prop$)
	getfilefield(filename$,key$,field)
	getfilefield(filename$,key$,field, dlm$, quoted)
	getfilerec(filename$,key$)
	getfilerec(filename$,key$, dlm$, quoted)
	getinival(filename$,section$[,name$])
	getpage(n,arr$[all])
	getppdval(name$,option$)
	getsubids(lib$,doctype$,docid$[,dlm$])
	inchtocols(inches)
	inchtorows(inches)
	inspage(n,arr$[all])
	jobclose(id$…)
	jobexec(id$,output$,driver$,argstring$)
	jobfile(id$)
	jobstore(id$)
	lbound(arr$[all][,dimension])
	left(str$,length)
	libexists(lib$)
	log(msg$)
	log(msg$,logfile$)
	lower(expression)
	ltrim(str$)
	mcut(col,row,cols,rows,value$,lf$,trim$)
	mget(col,row,cols,rows,lf$,trim$)
	mid(arg1$,arg2,arg3)
	mset(col,row,cols,rows,value$)
	msfax(filename$, faxnum$, tags$, errmsg$)
	parse(str$,n,delimiter$)
	parseq(str$,n,delimiter$)
	pdftoimage(fromfile$,tofile$,format$[,resolution[,errmsg$]])
	prm(“name”)
	proper(expression)
	putdocidprop(lib$, doctype$, docid$, prop$)
	putpage(n,arr$[all])
	right(str$,length)
	rtrim(str$)
	set(col,row,cols,value$)
	sshost(server$,port)
	striplines(text$)
	strtoarr(str$,arr$[all],dlm$)
	sub(str$,old$,new$)
	subidexists(lib$,doctype$,docid$)
	textfile(path$)
	textwidth(text$, fontnum|fontname$, size, attr)
	trim(expression)
	ubound(arr$[all][,dimension])
	upper(expression)

	 RUNTIME VERBS AND FUNCTIONS
	ASC(string)
	ATH(string)
	BIN(integer,length)
	BREAK
	CHR(integer)
	CONTINUE
	CVS(string,arg)
	DATE(julian {,time} {:mask})
	DTE(julian {,time} {:mask})
	DEC(string)
	DIM string(length {,char})
	DIM name[dim1{,dim2{,dim3}}]
	DIR("")
	EPT(number)
	ERASE filename
	EXITTO linelabel
	FBIN(number)
	I3E(number)
	FDEC(string)
	I3E(string)
	FID(channel)
	FILL(integer{,string})
	DIM(integer{,string})
	FIN(channel)
	FOR numvar=start TO end {STEP increment}
	FPT(number)
	GOSUB linelabel
	GOTO linelabel
	HTA(hexstring)
	IF test THEN statement(s) {ELSE statement(s)} {END_IF or FI}
	INT(number)
	JUL(year,month,day)
	LEN(string)
	LET var=value{,var=value…}
	MASK(string{,regexpr})
	MSK(string{,regexpr})
	MAX(num{,num…})
	MIN(num{,num…})
	MOD(num1,num2)
	NUM(string)
	ON integer GOTO|GOSUB linelabel{,linelabel…}
	OPEN(integer{,err=linelabel|next}{,isz=integer}) string
	POS(string1 relation string2 {,increment {,occurrence}})
	PRINT(channel) value {,value…}{,}
	READ{ RECORD}(channel {,options}) variable {,variable…}
	REM
	RETRY
	RETURN
	RND(integer)
	ROUND(number,precision)
	SCALL(string)
	SYS(string)
	SETERR linelabel
	SGN(number)
	STBL(string1{,string2})
	GBL(string1{,string2})
	STR(number{:mask})
	STR(string{:mask})
	STRING filename{,err=label}
	SERIAL filename{,err=label}
	TCB(integer)
	TIM
	UNT
	WHILE condition…WEND
	WRITE {RECORD} (chan,options)data

	 ERROR CODES

	 EMAIL INTEGRATION
	 HTML OUTPUT
	 CREATING HTML
	 HTML CONFIGURATION
	 HTML OUTPUT TEMPLATES
	 HTML RULE SETS
	 BORDER
	 COLDEF
	 COLWIDTH
	 FRAME
	 HDRON, HDROFF, HDRTD
	 LOAD
	 MULTIPAGE
	 NULLROW
	 OUTPUT
	 OTHEROPT
	 PAGESEP
	 PREJOB, PREPAGE, POSTJOB, POSTPAGE
	 ROWDEF
	 TITLE
	 TOC
	 WIDTH
	 SAMPLE HTML RULE SET
	AGING REPORT SAMPLE

	 INDEX

